Курсовая работа: Моделирование систем массового обслуживания

где величина а = пр - среднее число событий, попадающих на промежуток времени t, которое можно определить через интенсивность потока событий Xследующим образом: a= λ τ

Размерность интенсивности потока X есть среднее число событий в единицу времени. Между п и λ, р и τ имеется следующая связь:

n= λt; p= τ/t

где t- весь промежуток времени, на котором рассматривается действие потока событий.

Необходимо определить распределение интервала времени Т между событиями в таком потоке. Поскольку это случайная величина, найдем ее функцию распределения. Как известно из теории вероятностей, интегральная функция распределения F(t) есть вероятность того, что величина T будет меньше времени t.

F(t)=P(T<t).

По условию в течение времени T не должно произойти ни одного события, а на интервале времени t должно появиться хотя бы одно событие. Эта вероятность вычисляется с помощью вероятности противоположного события на промежутке времени (0; t), куда не попало ни одного события, т.е. m= 0, тогда

F(t)=1-P0 =1-(a0 *e-a )0!=1-e-Xt ,t≥0

Для малых ∆tможно получить приближенную формулу, получаемую заменой функции e- Xt , только двумя членами разложения в ряд по степеням ∆t, тогда вероятность попадания на малый промежуток времени ∆t хотя бы одного события составляет

P(T<∆t)=1-e- λ t ≈1-[1- λΔt+1/2(λΔt)2 -1/6(λΔt)3 ] ≈ λΔt

Плотность распределения промежутка времени между двумя последовательными событиями получим, продифференцировав F(t) по времени,

f(t)= λe- λt ,t≥0

Пользуясь полученной функцией плотности распределения, можно получить числовые характеристики случайной величины Т: математическое ожидание М (Т), дисперсию D(T) и среднее квадратическое отклонение σ(Т).

М(Т)= λ0 t*e- λt *dt=1/ λ ; D(T)=1/ λ2 ; σ(T)=1/ λ .

Отсюда можно сделать следующий вывод: средний интервал времени Т между любыми двумя соседними событиями в простейшем потоке в среднем равен 1/λ , и его среднее квадратическое отклонение также равно 1/λ, λ где, — интенсивность потока, т.е. среднее число событий, происходящих в единицу времени. Закон распределения случайной величины, обладающей такими свойствами М(Т) = Т, называется показательным (или экспоненциальным), а величина λ, является параметром этого показательного закона. Таким образом, для простейшего потока математическое ожидание интервала времени между соседними событиями равно его среднеквадратическому отклонению. В этом случае вероятность того, что число заявок, поступающих на обслуживание за промежуток времени t, равно к, определяется по закону Пуассона:

Pk (t)=( λt)k / k! *e-λ t ,

где λ - интенсивность поступления потока заявок, среднее число событий в СМО за единицу времени, например[чел/мин; руб./час; чеков/час; докум./день; кг./час; т./год] .

Для такого потока заявок время между двумя соседними заявками Т распределено экспоненциально с плотностью вероятности:

ƒ(t)= λe- λ t .

Случайное время ожидания в очереди начала обслуживания tоч тоже можно считать распределенным экспоненциально:

ƒ (tоч )=V*e- v t оч ,

где v — интенсивность потока прохода очереди, определяемая средним числом заявок, проходящих на обслуживание в единицу времени:

v=1/Точ ,

где Точ — среднее время ожидания обслуживания в очереди.

Выходной поток заявок связан с потоком обслуживания в канале, где длительность обслуживания tобс является тоже случайной величиной и подчиняется во многих случаях показательному закону распределения с плотностью вероятности:

ƒ(t обс )=µ*е µ t обс ,

где µ - интенсивность потока обслуживания, т.е. среднее число заявок, обслуживаемых в единицу времени:

µ=1/ t обс [чел/мин; руб./час; чеков/час; докум./день; кг./час; т./год] ,

где t обс - среднее время обслуживания заявок.

К-во Просмотров: 528
Бесплатно скачать Курсовая работа: Моделирование систем массового обслуживания