Курсовая работа: Мостовой усилитель мощности звуковой частоты
Выходной файл most.out см. Приложение 2.
5.1 Влияние температуры на работу схемы
Влияние температуры на амплитудно-частотную характеристику можно увидеть в Приложении. Как и ожидалось с ростом температуры происходит увеличение амплитуды сигнала.
Влияние температуры на выходной сигнал можно увидеть в Приложении 1. С ростом температуры Uвых увеличивается не значительно, зато при понижении температуры Uвых значительно падает.
5.2 Спектральная плотность внутреннего шума
В Приложении 1 показан график отношения сигнал-шум на всем частотном диапазоне существования сигнала. На частоте 50 kHz эта зависимость испытывает положительный экстремум и начинает медленно убывать. При приближении частоты к 0.5 kHz отношение сигнал-шум устремляется к бесконечности. Этот график подтверждает теоретические представления о том, что с ростом частоты уровень шумов начинает возрастать и оказывать негативное влияние на качество выходного сигнала.
5.3 Переходная характеристика усилителя
Зависимость выходного напряжения от входного показана в Приложении 1. Из графика видно, что рассматриваемый усилитель является инвертирующим. Амплитуда входного колебания возрастает в 31 раз по сравнению со входным колебанием.
5.4 Анализ Фурье-гармоник
Коэффициенты Фурье-гармоник есть в выходном файле, находящемся в Приложении 1
5.5 Амплитудно-частотная характеристика
АЧХ изображена в Приложении 1
Из графика видно, что АЧХ имеет полосу пропускания немного больше номинальной. Это сделано специально, чтобы полоса указанная в техническом задании почти без ослабления помещалась в полученную полосу частот. Следует отметить, что АЧХ имеет достаточно крутые фронты, что обеспечивает ослабление влияния на выходной сигнал шума и посторонних сигналов.
5.6 Анализ Монте-Карло
Разброс параметров резисторов задает разброс АЧХ по уровню в полосе пропускания, это можно увидеть в Приложении 1
5.7 Определение чувствительности схемы
Чувствительность см. выходной файл (Приложение 2).
Заключение
Данная работа была проведена с использованием пакетов схемотехнического проектирования OrCAD Release 9 и WorkBench V.4.
Спроектированный УМЗЧ может работать по назначению, однако его технические параметры немного хуже заданных в техническом задании. Объяснение этого факта см. Раздел 6.
Наибольшие трудности при выполнении работы вызвали поиск подлинных моделей и настройка схемы.
В заключении хочется отметить, что выполнение данной работы принесло неоспоримую пользу: чтобы правильно настроить схему необходимо было применять знания полученные из других курсов («ЭиМЭ», «СхАЭУ», «ТРЦиС») тем самым происходило становление радиотехнического мышления.
В ходе работы был изучен входной язык Pspice и современные пакеты прикладных программ автоматизированного проектирования. Считаю, что цели поставленные курсовой работой были достигнуты.
Библиографический список
1. Транзисторы для аппаратуры широкого применения: Справочник. Под ред. М. Бережнева, Е.И. Гатман. М.: Радио и связь, 1981.656 с.
2. Кийко В.В. Программное обеспечение курса АПРЭС: Методические указания по курсу «Автоматизированное проектирование радиоэлектронных схем». Екатеринбург: УПИ, 1992.40 с.
3. Кийко В.В. Моделирование и анализ электронных схем на ЭВМ: Методические указания к курсовой работе по курсу АПРЭУ. Екатеринбург: 1994.40 с.
Приложение 1
* Задание на анализ *****************************
OPT ACCT NOPAGE NOECHO RELTOL=0.0001
WIDTH OUT 80