Курсовая работа: Мутации и спирали эволюции
Рис. 8. Пространство нуклеотидов для последовательности пар и один из путей эволюции
Нетрудно видеть, что каждому из 16 состояний соответствует одна из пар-последовательностей ГГ, ГА, ГТ, ГЦ, АГ, АА, AT, АЦ, ТГ, ТА, ТТ, ТЦ, ЦГ, ЦА, ЦТ, ЦЦ — вершины прилегающих друг к другу квадратов. В случае последовательностей длины v = 3 необходимо включить еще тре тье измерение, в результате чего возникает куб с 64 вершинами, соответствующими 64 различным последовательностям-тройкам. Точковая мутация соответствует сдвигу вдоль ребра, параллельного одной из осей. Длины элементарных ребер не имеют непосредственного значения, так как априори все переходы Г → А, Г→ Т, Г → Ц, А → Т, А → Ц, А → Г, Ц → Г, Ц → А, Ц → Т равнозначны. Эволюционный nyi от одной последовательности нуклеотидов к другой, состоящий, вообще говор из многих мутаций, т. е. из многих шагов вдоль ребер, соответствует некоторок связному пути по гиперкубу. Примером может служить изображенный на рис. 8 эволюционный путь от АГ к ГТ. Если рассматривать популяции, то числу представителей Ni последовательности определенного типа i = А1 ... Аv может бы сопоставлено скопление точек мощности Ni в непосредственной окрестности о ответствующей i вершины (или жирная точка). Эволюция популяции описываетcя блужданием скопления точек по пространству нуклеотидов. Графическое представление в пространстве нуклеотидов особенно удобно для наглядного истолкования путей эволюции и при обсуждении стратегий эволюции. На языке теории автоматов переходы в пространстве нуклеотидов могут быть описаны как процессы в автоматах Рабина-Скотга.
Подойдем теперь к определению вероятностей элементарных переходов (8) в единицу времени. При этом будем следовать более ранним работам, в которых вероятности переходов были получены сначала для более простых эволюционных процессов Эйгена, а позднее уточнены с учетом образования гиперциклов.
(9)
Здесь aij — входящие в выражение (9) скорости мутаций, еi — скорости репродукции нуклеиновых кислот, bij — коэффициенты гиперциклических связей. Пренебрегая каталитическим действием протеинов, положим просто bij =0, еi = Ei и aij = Aij и получим бы вероятности перехода. Приведенные выше вероятности перехода позволяют легко вычислить стохастические траектории в пространстве состояний при заданных начальных условиях. Ценные выводы относительно исследуемого случайного процесса могут быть получены с помощью методов стохастической динамики, т. е. путем систематического исследования большого числа индивидуальных траекторий. Трудности, возникающие при применении этих методов к процессам эволюции, сводятся по существу с тому, что коэффициенты в выражении (8) известны лишь в очень грубом триближении. Другой метод исследования случайного процесса эволюции состоит в исследовании распределения вероятности
P(N1 ,N2 , ...; t) (9)
как функции времени. Для этого необходимо предварительно записать основное ;инетическое уравнение.
(10)
Распределение вероятности представляет собой поверхность, построенную над симплициальной решеткой; описанием деформации этой поверхности во времени служит случайный процесс эволюции. Разумеется, высказать определенное утверждение относительно распределения вероятности в пространстве столь высокой размерности необычайно трудно. К этому добавляется еще принципиальная трудность применения метода основного кинетического уравнения к общему эволюционному процессу: при заданных начальных распределениях, сосредоточенных на относительно узкой области пространства состояний (симплициальной решетки), основное кинетическое уравнение описывает систематическую тенденцию к относительно равномерному распределению вероятностей на всем пространстве состояний необычайно высокой размерности. Соответственно, возможные утверждения носят достаточно расплывчатый характер, а конечное стационарное распределение, к которому стремится система, по существу лишено определенного физического смысла. С другой стороны, основное кинетическое уравнение особенно хорошо подходит для изучения таких специальных вопросов, как выживание новых сортов и сосуществование новых сортов. Покажем, что основное кинетическое уравнение согласуется с детерминистическим уравнением . Для этого умножим уравнение (10) на Nk и просуммируем по всем числам заполнения. В результате мы получим уравнение для средних чисел заполнения:
(11)
Факторизуя средние значения и деля на объем, получаем из уравнения (11) уравнения для средней плотности Xk = (Nk )/V . Тем самым доказано, что стохастическое описание согласуется с детерминистическим. Исследуем теперь вопрос о вымирании или выживании нового сорта, возникающего в системе вследствие мутации. Ограничимся сначала простыми эйгеновскими системами без гиперцикцических связей. Предположим, что в системе имеется только один штаммовый сорт со скоростью воспроизведения Е1 и только один представитель мутантов со скоростью воспроизведения E2 , т. е. в начальном состоянии t = 0 выполняются равенства N 1 = N - 1, N 2 = 1.
Условимся рассматривать N2 как независимую переменную и пренебрегать в основном кинетическом уравнении всеми членами выше первой степени по N2 (что вполне допустимо, если учесть начальные условия). В результате мы получим упрощенное уравнение
(12)
Известно решение этого уравнения при начальном условии
(13)
Если интересует вероятность вымирания мутанта по истечении времени t , то
(14)
Введем для удобства записи фактор преимущества
(15)
и найдем вероятность выживания нового сорта:
(16)
Если определить n = El t как меру числа поколений, которые выживают мутанты, то получится очень простая формула
(17)
Рис. 9. Вероятность выживания мутанта через n поколений как функция фактора выживания d (сплошные линии — стохатическая теория; штриховые линии — детерминистическая теория)
На рис. 9 показана зависимость вероятности выживания от фактора преимущества и числа поколений. В то время как в детерминистической теории лучшие мутанты с d > 0 заведомо выживают, а худшие с d < 0 заведомо вымирают, более точная стохастическая теория предсказывает не столь определенное поведение. Как показано на рис. 9, вероятность выживания сначала возрастает с увеличением d , но подъем при d = 0 довольно плоский, вследствие чего примерно до n = 10 мутанты с d > 0 не очень существенно отличаются от d < 0. Мутанты, лежащие в определенной области (примерно в полосе ±10% от ценности штаммового сорта), в отношении отбора ведут себя почти нейтрально. Этим объясняется, почему в природе генотипы, представляющие вид, не едины, а охватывают группу сходных генных структур (дикий тип). Как показывает стохастическая теория, естественный отбор действует не очень точно, а допускает целое семейство генотипов, лежащих в области толерантности отбора.
Другое интересное утверждение, следующее из стохастической теории, состоит в том, что поведение гиперциклов типа «все или ничего» нарушается или по крайней мере ослабевает. Конкуренция между установившимся штаммовым гиперциклом и претерпевшим мутацию гиперциклом согласуется с динамическим поведением бистабильной системы. В детерминистической теории спонтанные переходы между двумя стабильными состояниями такой системы исключаются, стохастическая теория оставляет определенную вероятность таких переходов. Малость реакционного объема заведомо сыграла роль в ходе эволюции «протосупа». Примером тому служат реакции в коацерватах и в малых пылинках скальных пород. Решающий перелом к новому, лучшему гиперциклу в небольшом реакционном объеме мог произойти спонтанно и оттуда уже инфицировать макроскопическую окрестность.
3 . Игра в имитацию
Одна из принципиальных трудностей при создании теории реального процесса эволюции состоит в том, что относительно значений входящих в теорию параметров, например, скоростей воспроизведения и мутаций, известно очень мало. Можно надеяться, однако, что новое направление экспериментальных исследований — проведение направленных эволюционных экспериментов на микроорганизмах — позволит получить новые данные. Ныне представляется разумным подвергнуть теорию проверке с помощью компьютерных экспериментов. Численные эксперименты не отражают полностью реальный процесс эволюции, но позволяют имитировать характерные особенности реальных процессов.
Начнем с изложения компьютерной модели Ферстерлинга, Куна и Тьюза. Речь идет о последовательностях длиной v = 9 из четырех букв А, Т, Г и Ц, постоянно воспроизводящихся, иногда с ошибками (мутациями), при условии постоянного общего числа частиц N = 50. Мы исходим из некоторой начальной случайной последовательности, например,