Курсовая работа: Нахождение минимальных затрат при распределении товаров среди магазинов методами решения транспо
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
Глава 1. ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ
1.1 Транспортная задача
1.2 Методы составления опорного плана транспортной задачи
1.2.1 Метод северо-западного угла
1.2.2 Метод наименьшей стоимости
1.2.3 Метод потенциалов
1.2.4 Метод аппроксимации Фогеля
Глава 2. ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ МЕТОДОВ РЕШЕНИЯ ТРАНСПОРТНОЙ ЗАДАЧИ
2.1 Постановка задачи
2.2 Нахождение первоначального плана методом северо-западного угла
2.3 Нахождение первоначального плана методом наименьшей стоимости
2.4 Метод потенциалов
2.5 Метод аппроксимации Фогеля
2.6 Применение возможностей электронных таблиц при решении транспортной задачи
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ И ИСТОЧНИКОВ
ВВЕДЕНИЕ
Транспортная задача относится к классу задач линейного программирования. Транспортная задача решает проблему нахождения оптимального (минимального по стоимости) плана распределения и перемещения ресурсов от производителей к потребителям.
Существует множество методов для решения данной задачи. Выбрав один из методов можно быстро рассчитать оптимальный план распределения, что значительно сократит затраты на доставку товаров по точкам, в отличии от метода "наугад", когда приходится гадать куда и сколько распределить товаров.
Целью данной курсовой работы является решение задачи на распределения товаров среди магазинов с минимальными затратами различными методами.
Очень важно подобрать оптимальный метод распределения товаров, так как для решения разных задач оптимальными могут оказаться различные методы.
Курсовая работа состоит из двух глав: теоретическая часть, в которой рассмотрены методы решения транспортной задачи на распределения ресурсов. И практическая часть, в которой данные методы реализованы для решении конкретно поставленной задачи.
ГЛАВА 1. ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ
В настоящее время линейное программирование является одним из наиболее употребительных аппаратов математической теории оптимального принятия решений, в том числе и в финансовой математике. Для решения задач линейного программирования разработано сложное программное обеспечение, дающее возможность эффективно и надежно решать практические задачи больших объемов. Эти программы и системы снабжены развитыми системами подготовки исходных данных, средствами их анализа и представления полученных результатов. В развитие и совершенствование этих систем вложен труд и талант многих математиков, аккумулирован опыт решения тысяч задач. Владение аппаратом линейного программирования необходимо каждому специалисту в области прикладной математики.
Линейное программирование представляет собой наиболее часто используемый метод оптимизации. К числу задач линейного программирования можно отнести задачи:
· рационального использования сырья и материалов; задачи оптимального раскроя;
· оптимизации производственной программы предприятий;
· оптимального размещения и концентрации производства;
· составления оптимального плана перевозок, работы транспорта;
· управления производственными запасами;
· и многие другие, принадлежащие сфере оптимального планирования.
1.1 Транспортная задача
Транспортная задача относится к классу задач линейного программирования. Транспортная задача решает проблему нахождения оптимального (минимального по стоимости) плана распределения и перемещения ресурсов от производителей к потребителям. Проблема оптимизации стоимости перевозок актуальна и на сегодняшний день, так как позволяет фирмам и предприятиям существенно сократить расходы на транспорт. Правильная организация перевозок позволяет устранить встречные и дублирующие перевозки, сократить количество дальних перевозок и т. д. При решении транспортной задачи необходимо:
· обеспечить всех потребителей ресурсами;
· распределить все произведенные ресурсы;
· переместить ресурсы от производителей к потребителям с наименьшими затратами.
От каждого производителя ресурс может перемещаться к любому потребителю и измеряться в одних единицах измерения.
1.2 Методы составления опорного плана транспортной задачи
1.2.1 Метод северо-западного угла
На каждом этапе максимально возможным числом заполняют левую верхнюю клетку оставшейся части таблицы. Заполнение таким образом, что полностью выносится груз из или полностью удовлетворяется потребность .
1.2.2 Метод наименьшей стоимости
Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую. И в клетку, которая ей соответствует, помещают меньшее из чисел a i или b j . Затем, из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены. Либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя. Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--