4) тонкая структура;
5) электронная;
6) ядерная.
От уровня №1 до №6 увеличивается глубина проникновения и уменьшается размер структурных элементов. Структурные уровни связаны между собой по принципу матрешки.
Структурное состояние с описанной точки зрения в первом приближении характеризуется как функция от фазового состава, морфологии структуры и механического напряженного состояния. Во втором приближении описывается тремя системами, в которых одновременно располагаются элементы структуры различных структурных уровней.
Структурной обработкой (СО) можно влиять на 2, 3, 4 и 5 структурные уровни. На макроструктуру СО не влияет, т.к. она формируется при более высоких температурах, чем температура СО. На ядерную структуру также не влияет, т.к. СО не имеет необходимый уровень энергии для взаимодействия ядерной реакции.
Данная курсовая работа посвящена медно-бериллиевому сплаву (содержание Ве 2,3%). Особенностью медно-бериллиевых сплавов является широкий диапазон изменений механических и физических свойств при термообработке. Этот факт обуславливает широкое применение бериллиевых бронз: фасонное литье из медно-бериллиевых сплавов в земельные формы и кокиль, а также по выплавленным моделям и под давлением. В ряде случаев вместо литых деталей более целесообразно изготавливать детали из заготовок медно-бериллиевых сплавов, подвергнутых обработке давлением. В любом случае медно-бериллиевые сплавы обладают достаточно интересным комплексом свойств, но также имеют и недостатки, например, высокая стоимость сплавов из-за дорогостоящего процесса переработки руд [1].
Далее в работе будут рассмотрены все возможные виды структурных обработок медно-бериллиевого сплава (Сu + 2,3 % Ве).
2. Аналитическая часть.
2.1 Диаграмма состояния сплава Cu-Be и ее характеристика.
Рис 1. Диаграмма состояния бинарного сплава Cu – Be (с содержанием Be до 12%);
1- исходный сплав Cu + 2,3%Be ; 2 – сплав насыщенный Be до 2,7%. | |
??? ????? ?? ?????????, ??????????? ????????? ?????? ???? 1083?? (?. ? ?? ???.1). ??? ?????????? ?????????? ???????? ??????????? ?????? ? ????? ????????????? ??????? ??????????, ???????? ????????. ?? ????????? ?? ????????????? 860?? ? ???????????? 5,25% Be (?. ? ?? ???.1) ? ????? ??? ?????????? ???????? b-????. ??? ?????????? ?????????? ?????????? ???????? ??????????? ?????? ? ????? ????????????? ??????? ??????????.
В системе Cu – Be (с содержанием Be до 12%) имеются фазы a, b, g. По Н.Х. Абрикосову, фазы b и g(b') являются единым бертоллидом (химическим соединением переменного состава), а сплав, отвечающий химическому соединению CuBe, лежит за пределами области однородного твердого раствора g (b') [2].
Фаза a представляет собой твердый раствор Be в Cu, с максимальной растворимостью Be составляющей 2,7% при температуре 866°С (т. В на рис.1). При этих условиях она имеет гранецентрированную кубическую кристаллическую решетку с периодом 3,566Å. Растворимость Be с понижением температуры снижается, его значение изменяется по кривым ВА и AL (см. рис.1), и при температуре эвтектоидного распада b фазы она равна 1,55% , при 350°С — менее 0,4%.
При 866°С в интервале концентраций бериллия 2,75 - 4,2% по перитектоидной реакции между a-фазой и жидкостью образуется фаза b (). Сплавы, содержащие от 2,75 до 4,2% (по массе) бериллия, имеют одинаковую температуру конца затвердевания около 866°С (1139К) — линия BD соответственно. Микроструктура этих сплавов после закалки с 840°С состоит из a+b фазы. При увеличении содержания бериллия температура начала и конца затвердевания сплавов понижается. Минимальное значение (т. К на рис.1), как указывалось ранее, достигается при температуре 860°С и концентрации 5,25% Be и лежит на диаграмме состояния над однородной областью b-фазы. При этой концентрации температура начала и конца превращения совпадают и оно идет не в интервале температур, а при постоянной температуре. Если дальше увеличивать содержание бериллия, то превращение снова идет в интервале температур и температура начала и конца затвердевания сплавов повышается. Микроструктура сплавов, содержащих от 4,3 до 8,4% (по массе) Be, после закалки с температуры 840°С состоит из одних кристаллов b. Фаза b выше линии AFG » 605°С (условно принятая средняя температура распада этой фазы) — неупорядоченный твердый раствор бериллия в меди. Период его неупорядоченной объемно-центрированной кубической решетки при содержании 7,2% Be и температуре 750°С равен 2,79Å.
При закалке с температуры 840°С сплавов с содержанием бериллия больше 8,4% , вплоть до 11% микроструктура состоит из кристаллов b и g фазы. В гомогенной области g-фаза (в некоторых источниках b'-фаза) содержит от 11,3 до 12,3% Be. Она представляет собой упорядоченную фазу на основе интерметаллида CuBe с упорядоченной объемно-центрированной кубической решеткой типа CsCl и периодом 2,69-2,7Å. Эта фаза получается при реакциях: выделение из b-фазы () в интервале температур 605 - 870°С и концентраций 6 - 11%Ве — по линии FH; эвтектоидное превращение b-фазы () при температуре 605°С и концентрациях 1,5-11,5%Ве — AFG соответственно.
Ниже линии эвтектоидного равновесия (линия AFG на рис.1), в интервале концентраций бериллия 0,2-11,5% (интервал L-N на рис.1 соответственно) идет реакция выделения: , при которой из пересыщенной бериллием фазы a выделяется g-фаза с большим его содержанием.
В системе имеются перитектическое (2,75 – 4,2% Be) и эвтектоидное (1,5 – 11,5% Be) равновесия, при 866 и 605°С соответственно, имеются фазовые превращения типа растворение-выделение, ввиду ограниченной растворимости Be в различных модификациях меди.
Теперь рассмотрим превращения, происходящие конкретно в сплаве Cu + 2,3%Be (сплав №1 на рис.1).
В сплаве 1 со снижением температуры с 1000 до 980°С (т. S) не происходит никаких превращений (область существования только жидкой фазы), дальше в интервале S-Q (980-875°С) идет кристаллизация из жидкости кристаллов a-фазы, при этом состав жидкости меняется по линии ликвидус, а кристаллов по солидус. Как видно из диаграммы, при этом и жидкость и кристаллическая фаза обогащаются Ве, судя из характера расположения этих линий, соответственно количество бериллия в центре кристалла и на его поверхности различное, т.е. существует ликвация Ве как в объеме сплава, так и по самой дендритной ячейке. В интервале температур Q-R (875-740°С) существует одна a-фаза, а после, при охлаждении примерно до 605°С (т. Y на рис.1), идет обеднение a-фазы бериллием по линии ВA и выделение b-фазы. При охлаждении ниже 605°С в выделявшемся доселе неупорядоченном твердом растворе замещения b при эвтектоидном превращении идет упорядочение — образование фазы g (b'): атомы меди располагаются преимущественно в узлах решетки, а атомы бериллия — в центре [1]. Хотя в реальном кристалле этот порядок точно не соблюдается: атомы меди могут занять места бериллия и наоборот. Рентгенограммы g (b') в системе Cu-Be выявляют линии сверхструктуры, которые отсутствуют у b-фазы. После прохождения эвтектоидной реакции () в сплаве находится три вида фаз: a-фаза, которая образовалась при кристаллизации, a-фаза, которая образовалась при эвтектоидной реакции из b-фазы, и g (b')-фаза, которая также образовалась при эвтектоидном превращении. При дальнейшем охлаждении в интервале 605-20°С идет также обеднение a-фазы бериллием по линии AL и выделение, дополнительно, g(b')-фазы.
2.2 Определение основных исходных данных.
Как видно из диаграммы состояния, в сплаве 1 (Cu+2,3%Be) в твердом состоянии происходит 2-а фазовых превращения. Это растворение-выделение и эвтектоидное. Рассмотрим их:
· при температурах, ниже 740°С (интервал R- U на рис.1) идут реакции выделения из a-фазы b и g-фазы:
;
· при температуре 605°С (т. Y на рис.1) идет эвтектоидная реакция упорядочения b-фазы:
;
Из жидкости, в интервале температур 980-875°С (интервал S-Q на рис.1) идет реакция выделения кристаллов a-фазы:
.
И при температуре солидуса (т. Q) равной 875°С сплав полностью состоит из кристаллов a-фазы.
Полученные в разделе данные сводим в таблицу:
Табл.1 Основные исходные данные по сплаву Cu+2,3%Be.
Тип фазового превращения | Температура фазового равновесия, °С | Примечания |
Кристаллизация | 980 | Температура ликвидуса |
Кристаллизация | 875 | Температура солидуса |
Растворение-выделение | 740 |
Эвтектоидное | 605 |
2.3 Определение возможных видов структурной обработки.
Рассмотрим возможные для этого сплава виды обработок из классов: термической (ТО), деформационно-термической (ДТО) и химико-термической (ХТО) обработок.