Курсовая работа: Определение оптимальных складских запасов
Рис. 3. График изменения запасов в случае, когда недостаток запасов не допустим
Если дефицит запасов недопустим значит, что удельный штраф за дефицит единицы продукта в единицу времени Р = ∞ и подставив S/ P =0 в (13) - (15), получим:
, (16)
,(17)
; (18)
2) мгновенные поставки (рис. 4).
Рис. 4. График изменения запасов при мгновенных поставках
Мгновенные поставки означают, что λ = ∞ и μ/λ = 0. Теперь подставим в уравнения (13) - (15), получим
, (19)
,(20)
; (21)
3)дефицит не допускается, поставки мгновенные (рис. 5).
Рис. 5. График изменения запасов в случае, когда не допускается дефицит и поставки мгновенные
Данный частный случай является комбинированным из первого и второго пунктов, которые рассмотрены выше. Подставив Р = ∞ и S/ P =0, λ = ∞ и μ/λ = 0 в (13) - (15), получим
, (22)
,(23)
; (24)
Соотношения (22) – (24) называются формулами Уилсона, а (22) - экономическим размером партии.
4. Реализация найденного решения на практике
Задача управления запасами, а именно выбранная мною модель реализована в MathCad 2001iProfessional.
Список литературы
1. Черногородова Г.М. Теория принятия решений: Конспект лекций. Ч.1. Екатеринбург: Изд-во УМЦ УПИ, 2001. 97с.
2. Ю.П. Зайченко. Исследование операций. Учебник. - 6-е изд. Киев: Изд. дом: «Слово», 2003. 688с.
3. Задачи по исследованию операций. http://www.allmath.ru/appliedmath/operations/problems-tgru/zadachi.htm
4. Исследование операций: методы и модели. http://ecocyb.narod.ru/317/begin.htm
5. Электронное учебное пособие по курсу: «Моделирование экономических процессов». http://www.usfeu.ru/general_info/faculties/feu/metod/0611/Ush_posobie/Mep/ModEcProc/ras2.html
6. Википедия. Свободная энциклопедия. http://ru.wikipedia.org