Курсовая работа: Оптимизация сетевой модели комплекса производственных работ

На пятом шаге рассматривается работа 4-6, которая входит в первый и третий полные пути и ее продолжительность может быть сокращена на все 5 суток, т.к. продолжительность третьего полного пути на данном этапе пока выше требуемой.

На шестом шаге уменьшение продолжительности работы 3-4, входящей в третий полный путь, определяется продолжительностью более данного полного пути, соответствующей продолжительности всего комплекса работ. Поэтому эта продолжительность уменьшается на 3 суток и тем самым достигается заданная продолжительность всего комплекса работ.

Подсчитав суммарные дополнительные затраты на произведенное сокращение продолжительностей работ (360 у.е.) и зная первоначальную стоимость (1060 у.е.) всего комплекса работ в рассматриваемом нормальном варианте его выполнения, получим, что при снижении продолжительности выполнения всего комплекса работ с 32 суток до 19 суток оптимальные затраты составят 1060 + 360 = 1420 (у.е.)

Представим решение поставленной оптимизированной задачи вторым способом (ускоренный вариант выполнения комплекса работ) в таблице:

№ шага Сут. прир. затрат работа Количество сокращаемых суток Продолжительность полного пути Общий прирост затрат
1-4-6 1-2-3-5-6 1-2-3-4-6
0 - - - 11 15 17 -
1 40 5-6 (3) 3 - 18 - -120
2 35 3-4 (5) 2 - - 19 -70
3 30 4-6 (6) - - - - -
4 25 3-5 (2) 1 - 19 - -25
5 20 1-2 (1) - - - - -
6 15 1-4 (5) 5 16 - - -75
7 10 2-3 (3) - - - - -
В С Е Г О -290

Рассматривая работу 5-6 на первом шаге, приходим к выводу, что ее продолжительность можно увеличить на максимально возможную величину 3 суток, т.к. он входит во второй полный путь.

Тогда затраты на эту работу, снизятся на 3·40=120 (у.е.), т.е. -120 у.е.

На втором шаге продолжительность работы 3-4 может быть увеличена только на 2 суток, т.к. при этом продолжительность третьего полного пути станет как требуемая в задании.

Третий шаг придется не использовать, т.к. увеличение продолжительности соответствующей ему работы 4-6 приведет к недопустимому увеличению продолжительности третьего полного пути, а следовательно, и всего комплекса работ.

Аналогично второму шагу, на четвертом - продолжительность работы 3-5 может быть увеличена только на 1 сутки, т.к. при этом продолжительность второго полного пути станет как требуемая в задании.

Пятый шаг придется не использовать, т.к. увеличение продолжительности соответствующей ему работы 1-2 приведет к недопустимому увеличению продолжительности второго и третьего полного пути, а следовательно, и всего комплекса работ.

Рассматривая работу 1-4 на шестом шаге, которая входит в первый полный путь, увеличиваем на максимально возможную величину 5 суток и получаем снижение затрат.

Последний седьмой шаг пропускаем, т.к. увеличение продолжительности соответствующих им работ приведет к недопустимому увеличению продолжительности второго и третьего полных путей, а следовательно, и всего комплекса работ.

Подсчитав суммарное снижение затрат из-за произведенного увеличения продолжительностей работ (-290 у.е.) и зная первоначальную стоимость (1710 у.е.) всего комплекса работ в рассматриваемом ускоренном варианте его выполнения, получим, что при увеличении продолжительности выполнения всего комплекса работ с 17 суток до 19 суток оптимальные затраты составят 1710 - 290 = 1420 (у.е.)

Итоговые результаты, полученные обоими способами, совпадают:

1) продолжительности соответствующих полных путей после оптимизации совпадают – 16, 19, 19;

2) стоимости выполнения всего комплекса работ после оптимизации совпадают – 1420.


ЗАКЛЮЧЕНИЕ

Искусство экономико-математического моделирования состоит в выполнении двух противоречивых между собой требований:

с одной стороны, заменить сложный экономический объект его математической моделью для облегчения проводимых исследований;

с другой стороны, обеспечить адекватность математической модели моделируемому экономическому объекту.

В этой курсовой работе был построен сетевой график, проведен его анализ, и произведена оптимизация сетевого графика. Рациональность данных методик заключается в том, что они позволяют найти критический путь сетевого графика. Произведено решение двух основных задач сетевого планирования: задачу анализа оптимальности уже готового сетевого графика и задачу его оптимизации по длительности.

Заключение анализа сетевого графика состоит в том, чтобы выявить резервы времени работ, не лежащих на критическом пути, и направить их на работы, лимитирующие срок завершения комплекса работ. Результатом этого является сокращение продолжительности критического пути.

Сетевое планирование при реализации сложных проектов увеличивает эффективность работ и способствует уменьшению затрат.

Решение экономических задач с помощью метода математического моделирования позволяет осуществлять эффективное управление как отдельными производственными процессами на уровне прогнозирования и планирования экономических ситуаций и принятия на основе этого управленческих решений, так и всей экономикой в целом.


Список литературы:

1. Казаков О.Л., Миненко С.Н., Смирнов Г.Б. Экономико-математическое моделирование: учебно-методическое пособие. – М.: МГИУ, 2006 г. – 136 с.

2. Миненко С.Н., Казаков О.Л., Подзорова В.Н. Экономико-математическое моделирование производственных систем: Учебно-методическое пособие. – М.: ГИНФО, 2002 г. – 128 с.

3. Баев И.А., Ширяев В.И., Ширяев Е.В Экономико-математическое моделирование управления фирмой: М.: КомКнига, 2005г. – 224с.

К-во Просмотров: 263
Бесплатно скачать Курсовая работа: Оптимизация сетевой модели комплекса производственных работ