Курсовая работа: Основы расчёта оболочек

Давление в произвольном сечении оболочки равно давлению наддува плюс давление столба жидкости над рассматриваемым сечением:

,

где h – высота столба жидкости от зеркала жидкости до расчётного сечения.

,

,

где - радиус рассматриваемого сечения.

Определим вес жидкости в шаровом сегменте: ,

где – объём шарового сегмента, отсечённого нормальным коническим сечением с углом .

.

Спроектируем погонные меридиональные усилия в расчётном сечении на вертикальную ось : .

Величина равнодействующей от распределённых по кольцу радиуса r меридиональных сил определяется по формуле:

.

Окончательно получаем .

Принимая угол в диапазоне от 90˚ до 0˚, занесём значения составляющих уравнения равновесия с шагом угла , равным 10˚,в таблицу 2.

Таблица 2

, град

, МПа

S , м2

,

, Н

90

0,2809

3,976

2,982

81910

80

0,2863

3,856

К-во Просмотров: 899
Бесплатно скачать Курсовая работа: Основы расчёта оболочек