Курсовая работа: Основы расчёта оболочек
Давление в произвольном сечении оболочки равно давлению наддува плюс давление столба жидкости над рассматриваемым сечением:
,
где h – высота столба жидкости от зеркала жидкости до расчётного сечения.
,
,
где - радиус рассматриваемого сечения.
Определим вес жидкости в шаровом сегменте: ,
где – объём шарового сегмента, отсечённого нормальным коническим сечением с углом .
.
Спроектируем погонные меридиональные усилия в расчётном сечении на вертикальную ось : .
Величина равнодействующей от распределённых по кольцу радиуса r меридиональных сил определяется по формуле:
.
Окончательно получаем .
Принимая угол в диапазоне от 90˚ до 0˚, занесём значения составляющих уравнения равновесия с шагом угла , равным 10˚,в таблицу 2.
Таблица 2
, град |
, МПа |
S , м2 |
, |
, Н |
90 |
0,2809 |
3,976 |
2,982 |
81910 |
80 |
0,2863 |
3,856 |
К-во Просмотров: 899
Бесплатно скачать Курсовая работа: Основы расчёта оболочек
|