Курсовая работа: Особенности прогнозирования спроса в городских условиях

Второй важной функцией, которую выполняют подобные системы, является интеграция отделов финансов, маркетинга, продаж, логистики и создание общего информационного поля между компанией, ее клиентами и контрагентами. Для этого система должна легко интегрироваться с другими информационными приложениями. Таким образом, решение по прогнозированию спроса охватывает все основные звенья и позволяет формировать согласованные планы. Если речь идет о компании, имеющей региональную сеть продаж, то подобная система позволяет руководству не только отслеживать общие, глобальные тенденции продаж, т.е. осуществлять планирование сверху вниз, но также иметь возможность отслеживать продажи на местах, и вносить их в общие планы. Таким образом, система поддерживает не только данные, но и процессы и позволяет проактивно управлять спросом. Это означает, что в систему постоянно поступают данные о продажах, и на их основе автоматически проводится перепланирование, причем, система обладает способностью отслеживать тенденции в продажах и учитывать их в дальнейшем при составлении прогнозов.

Подобные системы поддерживают функцию рассылки уведомлений о проблемных ситуациях и узких местах. Например, коммерческий отдел система предупредит о росте продаж определенного товара и может подсказать о необходимости заключения дополнительного соглашения с поставщиком об увеличении объемов, а отдел планирования о допущенных ошибках при прогнозировании спроса на определенный товар.

Существуют условия, при которых прогнозировать спрос вообще не целесообразно:

· когда приемлемое время на ожидание клиентом, пока выполнится его заказ, превышает время на производство и закупку компонентов; другими словами, клиент готов ждать свой заказ столько времени, сколько организации потребуется для выполнения заказа без предварительного планирования;

· если мощности и прочие необходимые ресурсы для выполнения заказов клиентов этих организаций могут быть изменены быстро и не требуют существенных затрат;

· когда нет необходимости в финансовом планировании.

Во всех остальных случаях без прогнозирования спроса не обойтись. Однако формировать прогнозы спроса нужно ровно настолько, насколько этого требуют конкретные цели. Каждый из перечисленных ниже параметров прогнозов спроса должен быть обоснован целью его использования и определен до начала формирования прогноза.

Горизонт планирования. На какой период в будущем должен быть составлен прогноз? 10 лет? 12 месяцев? Неделя?

Уровень детализации. Должен ли прогноз спроса отражать конечные продукты по заказчикам? Или достаточно суммарного плана по категориям?

Частота пересмотра. Требуется ли прогноз спроса пересматривать раз в год? Раз в квартал? Раз в месяц? Раз в неделю? Каждый день? Каждый час?

Интервал прогнозирования. Какие временные промежутки должен отражать прогноз спроса? Годы? Месяцы? Недели? Дни?

2.2 Методы прогнозирования

Существует много классификаций методов прогнозирования спроса. Для удобства можно выделить всего две группы: экспертные и статистические.

Первые основаны на экспертных оценках и по своей природе субъективны. Суть их заключается в переведении различных экспертных мнений в формулы, из которых формируется прогноз. К экспертным методам относятся: метод комиссии, «мозговая атака», анкетный опрос, метод Дельфи[12] .

Статистические методы предполагают применение статистических расчетов для построения будущего на основе прошлого. Типичный пример – методы исчисления средних. Один из них – применение скользящей средней величины. Предположим, компания захотела использовать скользящую среднюю величину за 12 недель для прогноза спроса какого-либо товара. Для этого суммируют продажи за последние 12 недель, сумму делят на 12, получая таким образом среднюю величину. Через 7 дней добавляют продажи за последнюю неделю и отбрасывают первую неделю, получая данные опять за 12 недель. В этом случае мы говорим об использовании простой средней. Пример расчета:

Старый прогноз (месячные продажи) – 100 ед.

Фактические продажи (последний месяц) – 80 ед.

Новый прогноз (простая средняя) – 90 ед.

Один из очевидных недостатков этого метода заключается в том, что фактическим продажам придается такой же вес, как и старому прогнозу. Обычно лучше придать больший вес старому прогнозу и меньший – текущим продажам, так как последние могут представлять собой случайную вариацию, единственную в своем роде.

Весовые коэффициенты логичнее определить в 0,8 и 0,2 (в сумме они обязательно должны равняться 1,0). Тогда среднюю величину исчисляют так:

Старый прогноз – 100 x 0,8 = 80 ед.

Фактические продажи – 80 x 0,2 = 16 ед.

Новый прогноз (взвешенная средняя) – 80 + 16 = 96 ед.

Этот метод называется экспоненциальным сглаживанием. Весовой коэффициент, приданный текущим продажам (в данном случае 0,2) называют альфа-множителем. Экспоненциальное сглаживание представляет собой исчисление взвешенной скользящей средней. Преимущество этого метода в том, что он упрощает вычисления и часто позволяет хранить меньший объем данных. При экспоненциальном сглаживании требуются данные о «старом прогнозе» и альфа-множителе. Еще более важна гибкость метода. Если прогноз занижает действительный спрос, аналитик способен вручную ввести скорректированный прогноз в систему и приступить к сглаживанию. Это значительно удобнее, чем пытаться скорректировать расчет скользящей средней величины.

При использовании регрессионного и корреляционного анализа рассчитывают формулы, которые придают различный вес «индикаторам», связанным с прогнозируемыми товарами или группами товаров. Например, закладка жилых домов оказывает определенное влияние на продажу металлических изделий строительным фирмам. Динамика валового национального продукта (ВНП), вероятно, тоже оказывает влияние. Таким образом, учитывая степень важности влияния того или иного фактора, можно построить формулу для прогноза суммарных продаж металлоизделий для строительства. При этом особенное внимание нужно уделять ведущим индикаторам, то есть тем, значение которых увеличивается или уменьшается до того, как начнут изменяться прогнозируемые продажи. Правда, использование такого рода индикаторов может принести пользу лишь в том случае, если оно опирается на здравый смысл. Влияние факторов, которые были очень существенны в прошлом, может измениться с течением времени, а потому для них нужно будет применять другой весовой коэффициент. И здесь не обойтись без экспертной оценки.

Следует также помнить, что ни один из указанных методов не может компенсировать или учесть воздействие на спрос других факторов. Например, если продавцы металлических изделий из-за финансовых затруднений решили сократить запасы, зависимость между закладкой домов и продажей металлоизделий не даст точного прогноза. Возросшая иностранная конкуренция также может оказать решающее влияние на динамику продаж.

В реальной практике необходимо использовать простые статистические методы в сочетании с разумным экспертным суждением. Кроме того, выбор метода прогнозирования может и должен определяться параметрами необходимого прогноза (горизонт планирования, уровень детализации и пр.). Например, для составления прогноза спроса для бизнес-плана на 10 лет целесообразнее использовать методы экспертных оценок, нежели статистические[13] .

Эффективное прогнозирование спроса, равно как и любой другой бизнес-процесс, состоит из трех взаимосвязанных элементов: люди, процесс, инструменты.

Люди

При проектировании процесса прогнозирования спроса нужно учесть следующие факторы:

К-во Просмотров: 240
Бесплатно скачать Курсовая работа: Особенности прогнозирования спроса в городских условиях