Курсовая работа: Отрицательное преломление света на границах раздела сред
Из уравнений (10) и (21) следует, что соответствующее материальное уравнение (9) запишется как
Из уравнений (22) и (23) ясно, что параметр Ъ(оо) определяет, грубо говоря, меру пространственной дисперсии, обусловленной "магнитным откликом" системы: параметр b(ω) связан с магнитной восприимчивостью (см. уравнение (19)) соотношением
В свою очередь, параметр а(ω) определяет меру пространственной дисперсии, связанной с "электрическим откликом". Наличие параметра а(ω) и его зависимость от со невозможно учесть в рамках описания в терминах е(ω) и µ(ω). Оба этих отклика схожим образом влияют на дисперсию поперечных поляритонов (уравнения (22) и (16)), но дисперсия продольных волн зависит только от электрического отклика (уравнения (22) и (17)). Необходимо особо отметить, что поляритоны с отрицательной групповой скоростью и, следовательно, отрицательное преломление могут возникать в системах с µ(ω) = 1 (т.е. с b(ω) = 0), если коэффициент отклика а(ω) обладает соответствующей зависимостью от частоты.
3.3 Связь с микроскопическим описанием
Диэлектрический тензор εij (ω,к) описывает отклик среды на электромагнитное возмущение с произвольными частотами ωи волновыми векторами к. Этот тензор имеет определенные, хорошо известные аналитические свойства и в принципе может быть получен специальными методами из микроскопического описания элементарных возбуждений среды (см., например, работы [7, 23, 30-32], в которых обсуждаются многие важные аспекты этого вопроса). Например, для возмущенного основного состояния системы N заряженных частиц с зарядом е и массой т в объеме V диэлектрический тензор определяется следующим микроскопическим выражением [7]:
Входящие в выражение (24) векторы Мn (к) суть матричные элементы возмущения, записанные в декартовых координатах:
где rа - радиус-вектор а-й частицы. Здесь |0> обозначает волновую функцию основного состояния, а \ n - невозмущенные волновые функции разных возбужденных состояний. Эти состояния нулевого приближения, которые мы будем называть жситонами ("механическими экситонами", пользуясь терминологией [7]), следует вычислять без учета макроскопического электромагнитного поля.
Полезно проследить микроскопическое происхождение выражений типа (20) и (22) в изотропной системе с центром инверсии. Для простейшей модели независимых атомов или молекул в соответствии с уравнением (24) диэлектрическая проницаемость е(ω) определяется элементами Мn (к = 0) (более точные модели рассматриваются в [33, 34]):
и, следовательно, в нее вносят вклад только электрические дипольно-разрешенные переходы (называемые также Е1-переходами). Обозначая соответствующие частоты переходов через ωе n , получаем из уравнения (24):
где "силы осцилляторов". Вблизи какой-либо одной резонансной частоты ω± уравнение (27) приобретает такую структуру:
Член к2 в уравнении (20) имеет совсем другое происхождение: он возникает вследствие электрических дипольно-запрещенных переходов. В молекулярной картине такие запрещенные (forbidden) переходы становятся возможными благодаря последующим членам разложения exp (ikra ) в уравнении (25), и их неисчезающий вклад в Mf(k) есть
Магнитные дипольные переходы (Ml-переходы) происходят за счет антисимметричной комбинации
Эта комбинация должна стоять между < n |и |0> в уравнении (29). На самом деле там стоит другая комбинация, отличающаяся от (30) выражением
Как хорошо известно, комбинация (31) приводит к электрическим квадрупольным переходам. Различие между магнитными дипольными и электрическими квадрупольными переходами отражено в симметрии тензора Х определенного в уравнении (29): для первых он антисимметричен, а для вторых симметричен . Вклад в тензор < aiJlm (21), который дают и Е2 -переходы, и Ml-переходы, имеет вид
Заметим, что магнитные дипольные комбинации Х n ( m ) * Х n ( m ) входящие в уравнение (32), действительно вносят вклад только в коэффициент магнитного отклика b(ω) из уравнения (21). С другой стороны, электрические квадрупольные комбинации типа Х n ( q ) * Х n ( q ) дают вклад в оба коэффициента отклика, а(ω) и b(ω), определенных в уравнении (21). Примеры этому можно найти, например, в [7] (общее обсуждение электрической квадрупольной поляризации в макроскопической электродинамике см. в [35]).
Уравнение (32) ясно показывает, что магнитные дипольные и электрические квадрупольные переходы могут привести к вкладам одного и того же типа в поперечную диэлектрическую проницаемость ω± (ω,к). Учет такого вклада от одного изолированного резонанса с частотой ωприведет к замене уравнения (28) следующим уравнением: