Курсовая работа: Оценка погрешностей измерений

Рассчитаем основные параметры выборки для 30 интервалов:

Вывод:

В ходе работы были изучены методы статистической оценки распределения случайной величины. Осуществлены расчеты по представленной выборке, рассмотрены числовые характеристики случайной величины: объем выборки, медиана распределения, размах вариации, выборочное среднее, выборочная дисперсия и среднеквадратическое отклонение.

Построена эмпирическая функция распределения, определяющая частность события для каждого значения случайной величины x .

Установлен теоретический закон распределения с.в. Рассматриваемая случайная величина имеет нормальное распределение, что подтверждает критерий Пирсона.

Выборка также разбита на 20 и 30 интервалов. Соответствующие гистограммы дают визуальное представление о виде плотности распределения с.в. Основные числовые параметры выборки при увеличении числа интервалов практически не меняются.


Библиографический список

1) Письменный Д.Т. Конспект лекций по теории вероятностей и математической статистики / Письменный Д.Т. - М.: Айрис пресс, 2004. - 252с.

2) Колде Я.К. Практикум по теории вероятностей и математической статистике / Колде Я.К. - М.: Высш. школа, 1991. a - 157с.

3) Сергеев А.Г., Крохин В.В. Метрология: Учеб. пособие для вузов / Сергеев А.Г., Крохин В.В. - М.: Логос, 2001. - 408 с.: ил.

4) Аристов А.И. Метрология, стандартизация, сертификация / Аристов А.И. - М.: Академия, 2008. - 384с.

5) Радкевич Я.М. Метрология, стандартизация, сертификация / Радкевич Я.М. - М.: Высшая школа, 2010 - 792 с.

6) Димов Ю.В. Метрология, стандартизация и сертификация / Димов Ю.В. - СпБ.: Питер, 2010- 464с

К-во Просмотров: 270
Бесплатно скачать Курсовая работа: Оценка погрешностей измерений