Курсовая работа: Отыскание корня уравнения методом половинного деления

3) формула Симпсона

Выберем для вычисления интеграла по заданию формулу Симпсона, т.к. подынтегральная функция, имеет нелинейный характер и метод Симпсона обеспечивает

Наибольшую точность, т.к. подынтегральная функция аппроксимируется полиномом 2 порядка.

Описание метода:

Если для каждой пары отрезков [xi ;xi +2 ] построить многочлен второй степени, затем проинтегрировать его и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона:

n=2*m – чётное число

Геометрическая интерпретация формулы Симпсона:

На отрезке [xi ;xi +2 ] длиной 2h строится парабола, проходящая через три точки (xi ;yi ), (xi +1 ;yi +1 ), (xi +2 ;yi +2 ). Площадь под параболой, заключённой между осью абсцисс и прямыми x=xi , x=xi +2 , принимают равной интегралу


3.2 Поиск корня нелинейного уравнения

3.2.1 Постановка задачи

Пусть требуется найти решение уравнения f(x)=0. f(x) – непрерывная функция в конечном или бесконечном интервале. Если f(x) представляет собой многочлен, то уравнение называют алгебраическим, в противном случае – трансцендентным.

Всякое значение x=x* , обращающее f(x) в ноль, называется корнем этого уравнения.

Решение задачи отыскания изолированных корней состоит из двух этапов: отделение корней, уточнение корней. При отыскании действительных корней этап отделения производится либо графически, либо аналитически, основываясь на теореме: если f(x) принимает на разных концах отрезка [a;b] разные знаки, то на [a;b] существует по меньшей мере один корень уравнения f(x)=0.

Корень будет единственным на отрезке [a;b], если производная f(x) существует и сохраняет знак внутри [a;b].

3.2.2 Выбор и описание методов

Выбор метода:

Существует множество методов решения нелинейных уравнений, среди которых:

- метод половинного деления

- метод итераций

- метод Ньютона

- метод хорд

Выберем для решения нелинейного уравнения по заданию метод половинного деления, т.к. он имеет самые простые условия сходимости (не налагает никаких условий на производные f(x)) и прост в алгоритмизации.

Описание метода:

Пусть требуется уточнить единственный корень уравнения f(x)=0, принадлежащий отрезку [a;b] (отрезок неопределённости)

Точка c=(a+b)/2 – середина отрезка [a;b].

Если f(c)=0, то корень найден.

В противном случае для дальнейшего рассмотрения оставляют ту половину отрезка неопределённости [a;c] или [c;b], на концах которой знаки функции f(x) различны. При этом получается последовательность вложенных отрезков, содержащая искомый корень.

К-во Просмотров: 309
Бесплатно скачать Курсовая работа: Отыскание корня уравнения методом половинного деления