Курсовая работа: Поиск максимума одной функции многих переменных методом покоординатного спуска и с помощью метода

В работе реализуется нахождение решения одной задачи на тему максимизации функций многих переменных. При этом рассматриваются методы дихотомии и покоординатного спуска.

Пояснительная записка к курсовой работе состоит из двух основных частей: теоретической и практической.

В теоретической части рассматривается поиск максимума одной функции многих переменных методом покоординатного спуска и с помощью метода дихотомии.

Практическая часть содержит разработку программного обеспечения для решения заданной задачи выше указанными методами, реализованную на языке С++.

Объем пояснительной записки: 1

Количество рисунков: 3

Количество используемых источников: 3


Содержание

Введение

1. Постановка задачи

2. Решение задачи с использованием метода дихотомии

2.1 Описание метода дихотомии

2.2 Алгоритм решения

3. Решение задачи с использованием метода покоординатного спуска

3.1 Описание метода покоординатного спуска

3.2 Алгоритм решения

Заключение

Список используемой литературы

Приложение 1. Листинг программы№1

Приложение 2. Листинг программы №2

Приложение 3. Листинг программы №3

Приложение 4. Результаты работы программы №1

Приложение 5. Результаты работы программы №3


Введение

В работе рассмотрены способы нахождения таких значений аргументов, при которых исходная функция максимальна, а вспомогательная (от которой зависит исходная) – минимальна. В параграфе 2 изложено решение задачи с использованием метода дихотомии. В параграфе 3 произведено исследование задачи методом покоординатного спуска.


1. Постановка задачи

Исходная функция имеет вид:

, где:

xi R –– параметры исходной функции;

p, qR –– некоторые параметры удовлетворяющие условию 1<pq<∞;

с=c(x1 …xn ) –– вспомогательная функция, записанная в неявном виде

→min.

Задача:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 484
Бесплатно скачать Курсовая работа: Поиск максимума одной функции многих переменных методом покоординатного спуска и с помощью метода