Курсовая работа: Понятие эвристики в математике

И последнее - "составлять всегда обзоры столь общие, чтобы была уверенность в отсутствии упущений".

Основными этапами эвристического подхода являются "...накопление сведений об изучаемом явлении на нестрогом эвристическом уровне на основе численного эксперимента, создание интуитивной схемы явления, проверка ее на следующем этапе численного эксперимента и, наконец, построение строгой теории...". Свою точку зрения на предмет математики и ее соотношения с другими науками изложил в эссе "Математик" и статье "Роль математики в науках и обществе" математик и философ Нейман фон Джон. По Нейману, "...самая жизненно важная отличительная особенность математики состоит в ее совершенно особой связи с естественными науками или... с любой наукой, интерпретирующей опыт на более высоком уровне, нежели чисто описательный. Большинство людей... согласятся с тем, что математика не является эмпирической наукой или что она, по крайней мере, по образу действий отличается в некоторых весьма важных отношениях от методов эмпирических наук. Тем не менее, развитие математики весьма тесно связано с естественными науками. Один из ее разделов - геометрия - зародился как естественная, эмпирическая наука. Некоторые из наиболее ярких идей современной математики... отчетливо прослеживаются до своих истоков в естественных науках. Математические методы пронизывают "теоретические разделы" естественных наук и доминируют в них. Главный критерий успеха в современных эмпирических науках все в большей мере усматривают в том, насколько эти науки оказываются в сфере действия математического метода или почти математических методов физики. Неразрывная цепь последовательных псевдоморфоз, пронизывающая естественные науки, сближающая их с математикой и почти отождествляемая с идеей научного прогресса, становится все более очевидной. В биологию... проникают химия и физика, в химию - экспериментальная и теоретическая физика, в физику - наиболее изощренные в своей математической форме методы теоретической физики. Природа математики обладает весьма замечательной двойственностью. Эту двойственность необходимо осознать, воспринять и включить ее в круг представлений, неотъемлемых от предмета. Эта двуликость присуща лицу математики, и я не верю, что можно прийти к какому-либо упрощенному единому взгляду на математику, не пожертвовав при этом существом дела... Я считаю, что довольно хорошее приближение к истине (которая слишком сложна, чтобы допускать что-нибудь, кроме аппроксимации) состоит в следующем. Математические идеи берут свое начало в эмпирике, но генеалогия их подчас длинна и неясна. Но коль скоро эти идеи возникли, они обретают независимое, самостоятельное существование. Их лучше сравнивать с художественными произведениями, подчиняющимися чисто эстетическим оценкам, чем с чем-либо другим и, в частности, с эмпирическими науками. Однако... когда математическая дисциплина отходит достаточно далеко от своего эмпирического источника, а тем более, когда она принадлежит ко второму или третьему поколению и лишь косвенно вдохновляется идеями, восходящими к "реальности", над ней нависает... серьезная опасность. Она все более превращается в... искусство ради искусства... существует серьезная опасность... что математическая дисциплина начнет развиваться по линии наименьшего сопротивления, что поток вдали от источника разделится на множество мелких рукавов и что соответствующий раздел математики обратится в беспорядочное нагромождение деталей и всякого рода сложностей... на большом расстоянии от эмпирического источника или в результате чересчур абстрактного инбридинга /скрещивания близкородственных форм. Математической дисциплине грозит вырождение. При появлении того или иного раздела математики стиль обычно бывает классическим. Когда же он обретает признаки перерождения в барокко, это следует расценивать, как сигнал опасности... При наступлении этого этапа единственный способ исцеления... состоит в том, чтобы возвратиться к источнику и впрыснуть более или менее прямо эмпирические идеи. Я убежден, что это всегда было необходимо для того, чтобы сохранить свежесть и жизненность математической теории, и что это положение остается в силе и в будущем..." (эссе "Математик"). Нейман писал о том, что "...математика не должна ограничиваться ролью поставщика решений различных задач, возникающих в естественных науках; наоборот, естествознание должно стать неисчерпаемым источником постановок новых чисто математических проблем...". ("Роль математики в науках и обществе").

Об эвристическом значении критериев красоты в математическом поиске говорят и многие другие большие и не столь большие ученые - Гейзенберг, Гаррисон, Эйнштейн.

Так, А. Пуанкаре считает, что в нас сидит "эстетический сторож", который уже при самом зарождении идей отметает некрасивые математические решения, даже не допуская их к рассмотрению. Обращаясь к формуле закона тяготения, например, отечественный физик второй половины XX в. А. Китайгородский замечает следующее. Напомнив уравнение

F= ,

Китайгородский пишет, что если бы в числителе вместо произведения масс m1 и m2 фигурировала, скажем, сумма (m1+m2), а в знаменателе вместо r2 находилась бы r в девятой степени, такая формула сразу же отталкивала как неэстетическая, некрасивая и потому неверная.

И уже затем после этого первого досмотра осуществляет выбор между допущенными к конкуренции вариантами, когда выносится окончательный эстетический приговор в пользу наиболее совершенного, сполна удовлетворяющего эстетическому вкусу математического описания.

Остается непроясненным, а что же именно полагать красивым, каковы критерии самого этого критерия истинной теории? Это те же количественные (основанные на минимальности значений) и логические (симметрия, стройность и т.п.) характеристики, но пропущенные через эстетическое чутье ученого. Как пишет, например, математик Б. Гнеденко, "результат считается красивым, если из малого числа условий удается получить общие заключения, относящиеся к широкому кругу объектов.

Поэтому так важно воспитывать у исследователя восприятие прекрасного, способность схватывать и ценить красоту. Без достаточно развитого эстетического чувства, подчеркивает Пуанкаре, никто никогда не станет крупным творцом в математике.

Красоту математики видят в гармонии чисел и форм, геометрической выразительности, стройности математических формул, решении задач различными способами, в изяществе математических доказательств, в порядке, богатстве приложений, универсальности математических методов. Под понятие красоты подводится широкий спектр различных объектов от схем зверушек, составленных из отрезков, до представления красивого объекта моделью, удовлетворяющей требованиям изоморфизма, простоты и неожиданности. Так, Э.Т. Белл привлекательность математического объекта видит в совокупности следующих характеристик[4] :

— универсальность использования в различных разделах математики, как правило, изначально совсем неочевидная;

— продуктивность или возможность побудительного влияния на дальнейшее продвижение в данной области на основе абстракции и обобщения;

— максимальная емкость охвата объектов рассматриваемого типа.

Указанная совокупность признаков красивого математического объекта, как и другие предлагаемые наборы характеристик красоты, сформулирована не вполне четко и несколько размыто, что объясняется их «трудной уловимостью» и неполной осознаваемостью.

Наиболее четко характеристика эстетической привлекательности математического объекта дана Г. Биркгофом:

M=O/C,

где M — мера красоты объекта,

O — мера порядка,

а C — мера усилий, затрачиваемых для понимания сущности объекта[5] .

С формулой красоты, предложенной Г. Биркгофом, созвучна модель, разработанная В.Г. Болтянским[6] . По его мнению, красота математического объекта может быть выражена посредством изоморфизма между этим объектом и его наглядной моделью, простотой модели и неожиданностью его появления. Изоморфизм предполагает правильные, неискаженные отражения основных свойств явления в его наглядной модели. Созвучность видится в том, что как в первой, так и во второй модели мера красоты тем выше, чем меньше мера сложности объекта (по Биркгофу) или чем проще наглядная модель исследуемого объекта (по Болтянскому).

Надо сказать, что проблема красоты занимает не только математиков, она привлекала и привлекает внимание величайших умов человечества. Одни исследователи считают, что в красоте объектов проявляется их свойство, существующее независимо от сознания. Чувство красоты трактуется как продукт отражения в человеческом сознании реально существующих эстетических свойств окружающего мира. Другие рассматривают красоту как продукт ума, свободной мысли. Для третьих красота является даром богов, особенно женская красота, воспеваемая в поэзии, литературе, живописи. Писатель-фантаст А. Казанцев во второй половине прошлого столетия выдвинул версию, согласно которой красивыми кажутся те черты лица, которые отвечают биологической целесообразности, лучше приспособлены к природным условиям. Наиболее правдоподобно природа красоты была раскрыта в 60-х годах XX столетия известным психологом академиком Р.Х. Шакуровым. Им была предложена гипотеза о том, что красивы те черты лица, которые при зрительном восприятии укладываются в их корковый, обобщенный образ — в стереотипный усредненный стандарт, сформировавшийся в нашей голове в ходе общения с людьми. Сказанное отражает красоту форм. Другими составляющими красоты являются: ее эмоционально-экспрессивная сторона, обращенная к аффилиативной потребности, ассоциативно-эмоциональный компонент, оригинальность. Указанные составляющие проявляются в улыбчивых лицах, светящихся добротой и нежностью, в цвете лица, ассоциирующемся со здоровьем, в своеобразии, нестандартности.

Очевидно, что указанное понимание красоты лица может быть перенесено на красоту любого объекта, в частности математического. Наиболее привлекательным будет тот объект, представление о котором соответствует сформировавшемуся образу этого объекта. Данный вывод совпадает с указанными математическими моделями эстетической привлекательности математических объектов. Ясно, что в случае затраты минимума усилий, а это возможно когда восприятие укладывается в обобщенный образ (по Шакурову[7] ), мера красоты возрастает, причем степень возрастания пропорциональна росту меры порядка. Отсюда следует, что для ученика красивыми математическими объектами будут те, восприятие которых учеником сопряжено с наименьшими его усилиями. Их привлекательность будет усиливаться за счет динамической составляющей красоты, выражаемой в оригинальности, неожиданности, изяществе.

1.3. Эвристический подход к построении математических доказательств в рамках логического подхода

В логике различают дедуктивные и недедуктивные (эвристические) рассуждения. В связи с этим, для полноты картины, необходимо рассмотреть эвристический подход к построению математических доказательств в более широком контексте противопоставления дедуктивных и недедуктивных высказываний.

Дедуктивными называются рассуждения, заключение которых с логической необходимостью вытекают из посылок. Эти посылки могут быть истинными, правдоподобными или вероятными, или даже ложными, но если вы их приняли, то должны согласиться и с заключением дедукции. Вот почему в современной науке дедукция рассматривается как логический механизм преобразования информации, сохраняющий ее истинностное значение. Следовательно, она переносит истинностное значение посылок рассуждения на его заключение. Если эти посылки истинны и достоверны, то таким же будет и заключение. Подобный способ рассуждения в логике называют доказательством, и он является типичным для всех рассуждений в математике и точных науках.

Достоинства дедуктивных рассуждений состоят, во-первых, в том, что они допускают объективную, или точнее, интерсубъективную, проверку. Это значит, что каждый может проверить их посылки, а если он рассуждает по правилам дедуктивной логики, то и убедиться в достоверности заключения. Во-вторых, заключение, или следствие, дедукции имеет завершенный, окончательный характер, и поэтому его можно отделить от посылок и использовать его самостоятельно. Это свойство дедукции называют автаркией. Именно так поступают в математике, когда формулируют теоремы, не ссылаясь непосредственно на аксиомы, хотя в принципе через сложную цепь промежуточных дедукций их можно было вывести из аксиом. В-третьих, заключения, или следствия, дедукции, как мы уже отметили, имеют логически необходимый, доказательный, а следовательно, обязательный и принудительный характер для любого рассуждающего. На этом основании дедуктивные умозаключения, опирающиеся на истинные посылки, называют доказательными или демонстративными рассуждениями, а соответствующую аргументацию — демонстративной.

Все эти достоинства объясняют, почему именно дедуктивные рассуждения являются наиболее убедительными методами рассуждения, а очень часто в нашей литературе они просто отождествляются с аргументацией. Однако убедительность аргументации, как нетрудно убедиться, зависит прежде всего от характера тех аргументов, или доводов, которые служат посылками рассуждения. Очевидно, что если посылки дедукции будут ложными, то и заключение также будет ложным. Фундаментальный принцип дедукции состоит в том, что из истины нельзя по ее правилам вывести ложное заключение. Если посылки дедукции являются вероятными суждениями, тогда и заключение будет вероятным. Этот принцип относится и к исчислению вероятностей, аксиомы которой устанавливают, как из исходных вероятностей получаются другие вероятности. Все это показывает, таким образом, что дедуктивные умозаключения служат логическим механизмом преобразования информации, который не может превратить истину в ложь, а ложь в истину, а вероятность в невероятность.

Однако логика помогает не только преобразовывать существующую информацию и сохранять ее истинностное значение, но и искать новую информацию с помощью особых форм рассуждения, которые в отличие от дедуктивных умозаключений мы назовем эвристическими. Термин “эвристика” адекватно характеризует сущность недедуктивных рассуждений, которые ориентированы именно на поиск истины. Соответственно этому к эвристическим методам относятся те методы аргументации, которые основываются, во-первых, на недедуктивных способах рассуждений, во-вторых, используют определенные эвристические принципы для поиска истины. Общая черта, характерная для всех методов эвристической аргументации, — это вероятность их заключений и правдоподобный характер используемых рассуждений. Располагая истинными посылками в правдоподобном рассуждении, мы не можем гарантировать истинность его заключения. Можно поэтому сказать, что их посылки лишь с той или иной степенью вероятности подтверждают заключение. Самым распространенным способом таких рассуждении, известным еще с античной эпохи, является индукция, в которой на основании исследования определенного числа элементов определенного множества объектов, делается заключение обо всем множестве или по крайней мере о некоторых неисследованных его подмножествах или элементах. В науке такой процесс переноса известного знания на неизвестные случаи называют экстраполяцией, а в статистике — заключением от образца к популяции или, как принято в нашей литературе, — от выборки к генеральной совокупности. В связи с указанными соображениями можно рассматривать заключение от выборки к генеральной совокупности как статистическую индукцию.

Другим видом эвристических, или вероятностных, рассуждений является аналогия, основанная на сходстве некоторых признаков двух или нескольких объектов, причем это сходство используется для экстраполяции определенных признаков одного или нескольких объектов на другой объект. Очевидно, что заключение аналогии в принципе тоже будет всегда лишь вероятным, но не достоверно истинным. То же самое следует сказать о статистических обобщениях.

Различие между дедуктивными, или демонстративными, рассуждениями и рассуждениями эвристическими, или недемонстративными, можно представить наглядно в виде соответствующих схем. Типичными элементарными схемами дедуктивных рассуждений являются, во-первых, заключение от истинности основания к истинности следствия (modus ponens), во-вторых, заключение от ложности следствия к ложности основания (modus tollens)

К-во Просмотров: 212
Бесплатно скачать Курсовая работа: Понятие эвристики в математике