Курсовая работа: Построение и использование имитационных моделей

3.2 Интервальные оценки

Доверительный интервал для оценки математического ожидания случайной величины определяется формулой:

, (3.4)

где b = 0.95 – доверительная вероятность, - квантиль порядка , = - оценка дисперсии. = 1.96 для доверительной вероятности 0.95.

Доверительные интервалы для оценки математического ожидания случайных величин и равны:

(9.5886; 10.8315), – попадает в полученный доверительный интервал;

(9.5627; 10.7928), – попадает в полученный доверительный интервал.

3.3 Проверка статистических гипотез

Проверка гипотез об экспоненциальном распределении величин A и S осуществляется с помощью метода c2 .

Выдвигаем гипотезу о том, что случайные величины A и S распределены экспоненциально.

Статистическая функция вычисляется по формуле:

, (3.5)

где - это частота попадания в k –й интервал, pi - вероятность попадания, которая вычисляется следующим образом

, (3.6)

Расчет проводился на k = 20. Если , то гипотеза принимается, если , гипотеза отвергается. По данным таблицы для k=20 и =0.05, критерий c2 = 31.4.

В результате были получены следующие значения и

Таким образом, обе гипотезы принимаются.

Интервалы: [0 0,4879), [0.4879 1.0008), [1.0008 1.5415), [1.5415 2.1131), [2.1131 2.7193), [2.7193 3.3647), [3.3647 4.0547), [4.0547 4.7957), [4.7957 5.5962), [5.5962 6.4663), [6.4663 7.4194), [7.4194 8.4730), [8.4730 9.6508), [9.6508 10.9861), [10.9861 12.5276), [12.5276 14.3508), [14.3508 16.5823), [16.5823 19.4591), [19.4591 23.5138) .

3.4 Метод гистограмм

На рисунках 3.5 и 3.6 изображены гистограммы с функциями плотностей распределения вероятностей для A и S.

Рисунок 3.5 –Гистограмма величины A

Эта гистограмма показывает, что смоделированная случайная величина A распределена по экспоненциальному закону. Математическое ожидание случайной величины А равно 10.

Рисунок 3.6 –Гистограмма величины S

На гистограмме видно, что смоделированная случайная величина S распределена по экспоненциальному закону. Математическое ожидание случайной величины S равно 10.

На рисунках 3.7 и 3.8 изображены графики функций распределения вероятностей для A и S.

Рисунок 3.7 – Функция распределения величины A

К-во Просмотров: 960
Бесплатно скачать Курсовая работа: Построение и использование имитационных моделей