Курсовая работа: Построение кодопреобразователя
Выбор триггера. 23
Представление функции возбуждения. 25
Таблица состояний и выходов нормализованного автомата . 27
Минимизирующие карты.. 30
Минимизация функций по методу Квайна. 31
Минимизация функций по методу Мак-Класки. 32
Заключение. 43
Литература. 44
Задание
Построить устройство для преобразования последовательного двоично-десятичного кода X = (хЗ , х2 , х1 , х0 ), который подаётся на вход устройства z = (z3 , z2 , z1 , z0 ). Десятичный эквивалент X двоично-десятичного кода может быть вычислен: Х=Ë xi pi , где xi = 0, 1 - цифра двоично-десятичного кода, api - вес i-roразряда.
Вариант задания представлен в таблице:
Номер варианта |
X Р3 Р2 Р1 P0 |
z Р3 Р2 Р1 P0 |
24 | 4311 | 5211 |
Цель
Исследование влияния алгоритмов синтеза цифровых автоматов на сложность структуры самого цифрового автомата.
Любое цифровое устройство с необходимым поведением может быть спроектировано на основе единой модели, а именно как автомат Мили или автомат Мура. В работе изучаются синхронные варианты автоматов Мили и Мура. Синхронизация обеспечивает устойчивость состояний автомата и позволяет провести его синтез простейшим образом.
Введение
В ходе выполнения курсовой работы было реализовано построение кодопреобразователя по заданным значениям функций входа и выхода.
На первом уровне реализации работы была составлена таблица соответствий входного и выходного сигналов для десяти заданных значений и произведены преобразования для соблюдения условия автоматности.
На следующем уровне работы было произведено построение граф-деревьев абстрактных автоматов Мура и Мили. Затем по графу составлены таблицы переходов и выходов для автомата Мили.
На третьем уровне работы произведена минимизация автомата Мили путём составления таблицы переходов с распределением неопределённостей, исключением недостижимых состояний проектируемого автомата, определение классов совместимости до получения нормализованного автомата, построение графа полученного автомата.
На четвёртом уровне работы был произведён структурный синтез цифрового автомата с кодированием двоичным кодом входной, выходной функций автомата, а также функции состояний. Определена таблица состояний выбранного для реализации кодопреобразователя D-триггера.
Пятым этапом выполнения работы была минимизация с помощью диаграмм Вейча, функций выхода кодопреобразователя и возбуждения D-триггера, а также их реализация в базисе И, ИЛИ, НЕ.
На последнем уровне работы была составлена схема последовательного кодопреобразователя заданного входного кода в заданный выходной на простейших цифровых автоматах с памятью.
Особенностью цифрового автомата является зависимость оператора преобразования А от предыдущих состояний кодопреобразователя, то есть наличие памяти у цифрового автомата. В частном случае отсутствия памяти у цифрового автомата, он является логической схемой. Таким образом, предметами исследования в теории цифровых автоматов являются как собственно цифровые автоматы (системы с памятью), так и автоматы без памяти или логические схемы.
Наиболее разработана теория цифровых автоматов применительно к канонической структуре цифрового автомата, представленной на рис.1. Для дальнейшего рассмотрения используется только эта структура цифрового автомата.
КСВХ - входная комбинационная схема; П - память; КсВЬ1Х - выходная комбинационная схема; Х- входной цифровой код; В - код возбуждения памяти; А - код состояния памяти; Y - выходной код.