Курсовая работа: Построение неполной квадратичной регрессионной модели по результатам полного факторного эксперимента

Схема взвешивания во втором случае показана в табл. 2.

Здесь в первом опыте взвешивают все три образца вместе (холостое взвешивание не производится), а в следующих опытах – каждый образец в отдельности. В этом случае массу каждого образца оценивают по результатам всех опытов. Действительно, масса образца ; образца ; образца .

Таблица 1

Схема однофакторного эксперимента по взвешиванию образцов А, В и С

Номер опыта А В С Результаты взвешивания
1 - - - y1
2 + - - y2
3 - + - y3
4 - - + y4

Таблица 2

Схема многофакторного эксперимента по взвешиванию образцов А, В и С

Номер опыта А В С Результаты взвешивания
1 + + + y1
2 + - - y2
3 - + - y3
4 - - + y4

Какой же из способов взвешивания лучше? Будем считать лучшим способом тот, который дает более высокую точность. Если воспользоваться законом сложения дисперсий, для первого способа взвешивания получим:

где – дисперсия результатов взвешивания образцов; Sy – среднеквадратичная ошибка взвешивания.

Для второго способа

Оказывается, второй способ обеспечивает точность вдвое выше по сравнению с первым, хотя общее число опытов в обоих случаях одинаково. Произошло это по вполне понятной причине. Первый способ взвешивания является традиционной схемой эксперимента – типичной однофакторной. Несмотря на то, что здесь всего было сделано четыре опыта, массу каждого образца определяли только по результатам взвешивания двух образцов. Второй же способ представляет собой схему многофакторного эксперимента. Здесь массу образца определяли по результатам всех опытов, а это и дает выигрыш в точности. Чтобы получить результаты с той же точностью при традиционном экспериментировании, придется повторить все опыты, т. е. проделать по сути дела вдвое большую работу. Легко показать, что с увеличением числа факторов эффектив­ность многофакторного эксперимента растет.

2. Исходные данные

В разделе “Исходные данные” следует привести факторный план эксперимента, который выдается в табличной форме в задании на самостоятельную работу, дать характеристику факторного плана по равномерности дублирования экспериментов в каждом опыте и дать краткое описание (расшифровку) факторного плана.

По равномерности дублирования экспериментов различают факторные планы с равномерным (табл. 3) и неравномерным дублированием. Под дублированием понимается не серия измерений в одном опыте (“несколько образцов на точку”), а полное повторение опыта: приготовление сплава заново, новое проведение всех технологических операций механической обработки образцов и их подготовки к испытаниям.

Равномерное дублирование предполагает повторение экспериментов в каждой серии опытов одинаковое число раз (дублей). В рассматриваемом примере полного факторного плана с равномерным дублированием (табл. 3) количество дублей составляет 3 на каждую серию опытов, а количество опытов – 8. Таким образом, для постановки эксперимента необходимо 24 образца.

Неравномерное дублирование предполагает повторение экспериментов в каждой серии опытов неодинаковое число раз. На практике неравномерное дублирование экспериментов используется сравнительно редко из-за сложности построения регрессионных моделей по получаемым опытным данным.

При решении прикладных задач материаловедения количество дублей в каждом опыте принимают не менее 3-х. Это обусловлено следующим обстоятельством. При изучении свойств большинства материалов одними из наиболее существенных факторов, которые эти свойства определяют, являются элементы химического состава материалов. Следовательно, план эксперимента предусматривает приготовление ряда сплавов определенного химического состава. Но готовить сплавы точно заданного состава (а этого требуют предпосылки регрессионного анализа ) не всегда просто. В том случае, когда попадание в состав неудовлетворительно, как и во всех остальных случаях непопадания факторов на заданный уровень, можно попытаться учесть ошибки в определении факторов. Однако когда фиксация факторов на заданных уровнях происходит с очень большими нарушениями, факторы (независимые переменные) можно считать случайными переменными, значения которых меняются от одного опыта к другому в соответствии с некоторым распределением. В этом случае следует вообще отказаться от использования регрессионного анализа и воспользоваться, например, конфлюэнтным анализом.

Расшифруем матрицу планирования с равномерным дублированием экспериментов, приведенную в табл. 3. Цельюисследований являлось изучение влияния химического состава чугунных тормозных колодок на их износостойкость (y) в условиях сухого трения в трибосопряжении с контртелом из закаленной стали 45. Всего было произведено восемь серий опытов. Каждый опыт дублировался 3 раза, следовательно, дублирование равномерное.

Варьируемыми факторами (независимыми переменными) являлись концентрации легирующих элементов в чугуне: алюминия (x1 ), марганца (x2 ), углерода (x3 ). Пределы варьирования химического состава чугуна (см. табл. 3): Al – 10,8…11,0 %, интервал варьирования 0,1 %; Mn – 1,2…1,8 %, интервал варьирования 0,3 %; С – 31,4…32,6 %, интервал варьирования 0,6 %. Условно содержание легирующих элементов по верхнему и нижнему пределам (уровням) обозначены через кодированные значения факторов “Хi = +1” и “ Хi = -1”. Верхний уровень “ Хi = +1” соответствует максимальному содержанию легирующего элемента, нижний уровень “ Хi = -1” – минимальному его содержанию.

Таким образом, переменные хi задают химический состав сплава через концентрацию легирующих элементов в натуральном виде, а переменные Хi – в кодированном виде соответственно через верхний (Хi = +1) и нижний (Хi = -1) уровни (табл. 3). В дальнейшем для построения регрессионной модели сначала будут использоваться кодированные значения факторов Хi , а затем будет производиться переход от кодированных значений факторов к их фактическим значениям хi .

Таблица 3

Матрица плана ПФЭ 23 с равномерным дублированием экспериментов

Варьируемый фактор Натуральные (фактические) значения факторов Значения yiu (интенсивность изнашивания, г/см2 )
х1 (% Al) х2 (% Mn) х3 (% С)
Основной уровень, хi0 10,9 1,5 32,0
Интервал варьирования, Dхi 0,1 0,3 0,6
Верхний уровень, хi(max)i = +1) 11,0 1,8 32,6
Нижний уровень, хi(min)i = -1) 10,8 1,2 31,4
№ опыта, u Кодированные значения факторов и соответствующие им (в скобках) натуральные значения Номер дубля
Х1 (Al) Х2 (Mn) X3 (С) 1 2 3
u = 1 -1 (10,8 %) -1 (1,2 %) -1 (31,4%) 97,8 99,4 94,6
u = 2 +1 (11,0 %) -1 (1,2 %) -1 (31,4%) 128,3 130,0 124,4
u = 3 -1 (10,8 %) +1 (1,8 %) -1 (31,4%) 152,1 149,4 159,6
u = 4 +1 (11,0 %) +1 (1,8 %) -1 (31,4%) 73,8 71,2 70,7
u = 5 -1 (10,8 %) -1 (1,2 %) +1(32,6%) 110,3 118,5 112,2
u = 6 +1 (11,0 %) -1 (1,2 %) +1(32,6%) 93,8 91,1 90,4
u = 7 -1 (10,8 %) +1 (1,8 %) +1(32,6%) 126,2 130,3 124,8
u = 8 +1 (11,0 %) +1 (1,8 %) +1(32,6%) 114,2 110,4 111,9

В соответствии с данными табл. 3 для построения регрессионной зависимости интенсивности изнашивания чугунных тормозных колодок от содержания в них углерода, алюминия и кремния необходимо произвести 24 эксперимента. Для того чтобы исключить влияние систематических ошибок, вызванных различными внешними условиями, данные эксперименты проводятся рандомизированно во времени, т. е. в случайной последовательности.

3. Расчет дисперсии опыта

Построчная дисперсия для каждого эксперимента определяется по формуле:

(1)

(2)


где g и nu - номер и количество дублей эксперимента соответственно; - результат g-го повторения u-го эксперимента; - среднее арифметическое значение всех дублей u - го эксперимента; fu - число степеней свободы в u - м опыте при определении u - й построчной дисперсии .

Число степеней свободы – понятие, учитывающее в статистических ситуациях связи, ограничивающие свободу изменения случайных величин. Это число определяется как разность между числом выполненных опытов и числом констант (средних, коэффициентов и пр.), подсчитанных по результатам тех же опытов.

К-во Просмотров: 272
Бесплатно скачать Курсовая работа: Построение неполной квадратичной регрессионной модели по результатам полного факторного эксперимента