Курсовая работа: Приемы активизации познавательной деятельности
Рассматривается, например, задача: «У Лены было 6 карандашей, а у Тани 4 карандаша. Сколько карандашей у обеих девочек?» К доске выходят две девочки. У одной из них в руке 6 карандашей, у другой — 4 карандаша. Такое воспроизведение уточняет представления детей, возникшие при восприятии ими задачи.
Для закрепления умения строить предметные модели можно предлагать учащимся такие задания:
1) Изобразите с помощью кружков красного и желтого цвета то, о чем говорится в задаче: «У дома 3 клумбы и у школы столько же клумб. Сколько всего клумб у дома и у школы?» Что обозначают кружки красного цвета? Кружки желтого цвета?
2) На фланелеграфе — синие прямоугольники условно изображают тетради у Тани, а зеленые — тетради у Димы. Составь те задачу. Покажите те тетради, число которых требуется узнать в задаче.
3) На фланелеграфе — предметные модели нескольких задач (рис. 1). Учитель читает задачу: «У Володи было 8 красных кружков, а синих в 2 раза меньше.
Сколько синих кружков было у Володи .Учащиеся должны показать соответствующую модель.
Рис. 1
2. Графические модели (это рисунки и чертежи, которые помогают понять задачу, организовать поиск ее решения).
Рисунок может быть таким, что по нему, не выполняя арифметического действия, легко дать ответ на поставленный в задаче вопрос, например: «У Иры было 5 маленьких матрешек. 3 она подарила. Сколько матрешек стало у Иры?» (Рис. 2).
Рис. 2
3. Схематическая модель — это краткая запись задачи (в методической литературе рассматриваются различные виды краткой записи).
Для формирования умения записыватькратко простую задачу используются опоры — таблицы, выполненные по принципу перфокарт.
Для закрепления умения составлять краткую запись простой задачи могут использоваться следующие задания:
1) Запишите кратко задачу: «В вазе лежало 9 груш. 3 груши съели. Сколько груш осталось?»
2) Ученик к задаче: «Сорока может прожить 27 лет, это в 3 раза больше, чем может прожить ласточка. Сколько лет может прожить ласточка?» — составил такую краткую запись:
С— 27 л. Л.— ?, в 3 р. б.
Правильно ли ой1 записал? Если есть ошибки, исправьте их.
3) Учитель читает задачу: «В двух коробках 10 карандашей. В первой 4. Сколько ВЫУЮ -\ Взяли -\ Осталось-
Рис. 3 карандашей во второй коробке?» Учащиеся должны среди схем (рис. 3) выбрать ту, которая соответствует условию этой задачи.
4) Сейчас мы решим задачу, которую кратко можно записать так: Было — 5 ш. Стало — ?, на 2 ш. б.
5) Прочитайте задачи на с. 69 Укажите те задачи, которые могут быть решены с помощью умножения.
Выбрав арифметическое действие, учащиеся переходят к его выполнению, т. е. к третьему этапу решения задачи.
Решение задачи может выполняться устно и письменно. В начальных классах решение примерно половины всех задач должно выполняться устно. В основном устно решаются задачи на третьем этапе обучения решению задач, т. е. при формировании умения решать задачи рассматриваемого вида. Письменно решение выполняется, как правило, в период ознакомления с задачами нового вида.
Основная форма записи решения простых задач — по действиям.
С целью активизации познавательной деятельности учащихся используют графический способ решения задач.
Например: «На детское пальто расходуют 2 м драпа. Сколько таких пальто можно сшить из 12 м драпа?» Условимся изображать 1 м драпа отрезком в 1 см. Тогда весь имеющийся материал можно изобразить в виде отрезка АВ (рис. 4). Опираясь на чертеж, легко дать ответ на вопрос задачи: «Можно сшить 6 пальто».
Рис. 4
Рассмотрим приемы активизации учащихся, используемые на четвертом этапе обучения решению задач, т. е. при проверке решенной задачи.
Для проверки простых задач используют следующие способы: