Курсовая работа: Применение линейного программирования для решения экономических задач (оптимизация прибыли)
Требуется найти такие неотрицательные , которые обеспечивают максимум или минимум целевой функции (формула 1.1), которые удовлетворяют системе ограничений (формула 1.2) и не противоречат условиям неотрицательности: .
(1.1)
(1.2)
… … … … … … … … … …
В зависимости от вида функции различают разделы математического программирования: квадратичное программирование, выпуклое программирование, целочисленное программирование и т.д. Линейное программирование характеризуется тем, что функция является линейной функцией переменных . [1 c.11-12]
Формы задач линейного программирования:
1. стандартная;
1.1 первая стандартная форма (формула 1.3);
1.2 вторая стандартная форма (формула 1.4);
2. каноническая (формула 1.5).
(1.3)
… … … … … … … … … …
.
(1.4)
… … … … … … … … … …
.
(1.5)
… … … … … … … … …