Курсовая работа: Применение линейного программирования для решения экономических задач (оптимизация прибыли)
Особенно широкое применение методы и модели линейного программирования получили при решении задач экономии ресурсов (выбор ресурсосберегающих технологий, составление смесей, раскрой материалов, производственно-транспортных и других задач). [2, c.92]
Рассмотрим постановку задачи о наилучшем использовании ресурсов. Пусть некоторая производственная единица (цех, завод, объединение и т. д.), исходя из конъюнктуры рынка, технических или технологических возможностей и имеющихся ресурсов, может выпускать n различных видов продукции (товаров), известных под номерами, обозначаемыми индексом j. Товары будем обозначать . Предприятие при производстве этих видов продукции должно ограничиваться имеющимися видами ресурсов, технологий, других производственных факторов (сырья, полуфабрикатов, рабочей силы, оборудования, электроэнергии и т. д.). Все эти виды ограничивающих факторов называют ингредиентами . Пусть их число равно m; припишем им индекс i. Они ограничены, и их количества равны соответственно условных единиц. Таким образом, - вектор ресурсов. Известна экономическая выгода (мера полезности) производства продукции каждого вида, исчисляемая, скажем, по отпускной цене товара, его прибыльности, издержкам производства, степени удовлетворения потребностей и т. д. Примем в качестве такой меры, например, цену реализации , т. е. — вектор цен. Известны также технологические коэффициенты , которые указывают, сколько единиц i–го ресурса требуется для производства единицы продукции j-го вида. Матрицу коэффициентов называют технологической и обозначают буквой А. Имеем . Обозначим через план производства, показывающий, какие виды товаров нужно производить и в каких количествах, чтобы обеспечить предприятию максимум объема реализации при имеющихся ресурсах. Так как - цена реализации единицы j-й продукции, цена реализованных единиц будет равна , а общий объем реализации примет вид (формула 2.1). Это — целевая функция, которую нужно максимизировать.
(2.1)
Так как - расход i-го ресурса на производство единиц j-й продукции, то, просуммировав расход i-горесурса на выпуск всех n видов продукции, получим общий расход этого ресурса, который не должен превосходить единиц (формула 2.2).
(2.2)
Чтобы искомый план был реализован, наряду с ограничениями на ресурсы нужно наложить условие неотрицательности на объёмы выпуска продукции .
В модель задачи о наилучшем использовании ресурсов входят: целевая функция (формула 2.3), система ограничений (формула 2.4) и условия неотрицательности (формула 2.5)
(2.3)
(2.4)
(2.5)
Так как переменные входят в функцию и систему ограничений только в первой степени, а показатели являются постоянными в планируемый период, то это – задача линейного программирования.
В различных отраслях народного хозяйства возникает проблема составления таких рабочих смесей на основе исходных материалов, которые обеспечивали бы получение конечного продукта, обладающего определенными свойствами. К этой группе задач относятся задачи о выборе диеты, составлении кормового рациона в животноводстве, шихт в металлургии, горючих и смазочных смесей в нефтеперерабатывающей промышленности, смесей для получения бетона в строительстве и т. д.. Высокий уровень затрат на исходные сырьевые материалы и необходимость повышения эффективности производства выдвигает на первый план следующую задачу: получить продукцию с заданными свойствами при наименьших затратах на исходные сырьевые материалы.
Сущность задачи об оптимальном раскрое состоит в разработке таких технологически допустимых планов раскроя, при которых получается необходимый комплект заготовок, а отходы (по длине, площади, объему, массе или стоимости) сводятся к минимуму. Более сложные постановки ведут к задачам целочисленного программирования.
Общая постановка транспортной задачи состоит в определении оптимального плана перевозок некоторого однородного груза из m пунктов отправления в n пунктов назначения . При этом в качестве критерия оптимальности обычно берется либо минимальная стоимость перевозок всего груза, либо минимальное время его доставки. Рассмотрим транспортную задачу, в качестве критерия оптимальности которой взята минимальная стоимость перевозок всего груза. Обозначим через тарифы перевозки единицы груза из i-го пункта отправления в j-й пункт назначения, через – запасы груза в i-м пункте отправления, через – потребности в грузе в j–м пункте назначения, а через – количество единиц груза, перевозимого из i-го пункта отправления в j-й пункт назначения. Тогда математическая постановка задачи состоит в определении минимального значения функции (формула 2.7) при определенных ограничениях (формула 2.8) и условиях неотрицательности (формула 2.9).
(2.7)
(2.8)
(2.9)
Обычно исходные данные транспортной задачи записывают в виде таблицы, которую называют матрицей планирования. (табл. 2.1).
Таблица 2.1
Матрица планирования ТЗ
Поставщики | Потребители | Запасы | |||
B1 | B2 | … | Bn | ||
A1 | C11 | C12 | … | C1n | a1 |
A2 | C21 | C22 | … | C2n | a2 |
… | … | … | … | … | … |
Am | Cm1 | Cm2 | … | Cmn | am |
b1 | b2 | … | bn |
Таким образом, обеспечивается доставка необходимого количества груза в каждый из пунктов назначения, вывоз имеющегося груза из всех пунктов отправления, а также исключаются обратные перевозки. Всякое неотрицательное решение систем линейных уравнений называется планом транспортной задачи. План, при котором целевая функция принимает свое минимальное значение, называется оптимальным планом транспортной задачи. Если в опорном плане число отличных от нуля компонент равно в точности n+m–1, то план является невырожденным, а если меньше – то вырожденным. [3 c.132-134]
Если общая потребность в грузе в пунктах назначения равна запасу груза в пунктах отправления, то модель такой транспортной задачи называется закрытой. Если же указанное условие не выполняется, то модель транспортной задачи называется открытой.
В случае превышения запаса над потребностью, вводится фиктивный (n+1)–й пункт назначения с потребностью (формула 2.10) и соответствующие тарифы считаются равными нулю. Аналогично, в случае, если потребности превышают количество запасов, также вводится фиктивный (m+1)–й пункт отправления с запасом груза и тарифы полагаются равными нулю (формула 2.11). Этим задача сводится к обычной транспортной задаче, из оптимального плана которой получается оптимальный план исходной задачи.
(2.10)
(2.11)
Как и для всякой задачи линейного программирования, оптимальный план транспортной задачи является и опорным планом. Опорный планявляется допустимым решением ТЗ и используется в качестве начального базисного решения при нахождении оптимального решения методом потенциалов. Существует четыре метода нахождения опорных планов:
1. метод северо-западного угла;
2. метод минимального элемента;