Курсовая работа: Проект балочной площадки
N = 1,01·(np ·p + ng ·g) ·A·B = 1,01·(1,2·22 + 1,05·1,5) ·15·6 = 2540 кН
Длина колонны: l0 = 11 – 0,01 – 0,3 – 1,72 = 8,97 м
Зададимся гибкостью λ = 60 и находим φ = 0,785 (по прил 7 [1]), площадь сечения
Aтр = N/( φ· R) =2540/0,785·28 = 115,5 см2 ,
где R = 28 кН/м2 – расчетное сопротивление для стали марки Вст 3nc6 – 2 радиус инерции:
imp = l0 / λ = 897/60 = 14,95
По сортаменту ГОСТ 8240 – 72* принимаем два швеллера 40 со значениями А = 2·61,5 = 123 см3 ; ix = 15,7 см .
Рассчитываем гибкость относительно оси х
λх = 897/15,7 = 57; φх = 0,800 (прил. 7)
Проверяем устойчивость относительно оси х
σ = N/φ A = 2540/0,8·123 = 25,8 кН/м2 < R = 28 кН/см2
Рисунок 7 – Сечение сквозной колонны
Расчет относительно свободной оси.
Определяем расстояние между ветвями колонны из условий равноустойчивости колонны в двух плоскостях λпр = λх , затем требуемую гибкость относительно свободной оси у-у по формуле:
Принимаем гибкость ветви равной 30 и находим
Полученной гибкости соответствуют радиус инерции iy = 897/48 = 18,7 см; и требуемое расстояние между ветвями b = i· y/0,44 = 18,7/0,44 = 42 см
Полученное расстояние должно быть не менее двойной ширины полок швеллеров плюс зазор, необходимый для оправки внутренних поверхностей стержня bтр = 2·115 + 100 = 330 мм < 42 см , следовательно принимаем ширину колонны = 420 мм.
Проверка сечения относительно свободной оси.
Из сортамента имеет: I1 = 642 см4 ; i1 = 3,23 см; z0 = 2,68 см .
Iy = 2·[642 + 61,5·(21 – 2,75)2 ] = 42250 см4
Расчетная длина ветви lb = λ1 · i1 = 30·3,23= 97 см
Принимаем расстояние между планками 97 см м сечение планок 10×250 мм, тогда
Iпл = 1·253 /12 = 1302 см4
Радиус инерции сечения стержня относительно свободной оси
Гибкость стержня относительно свободной оси
λу = 897/18,5 = 48,5