Курсовая работа: Проектирование деревянного моста
Рис. 3.2 Расчетная схема
3.2.2 Сбор нагрузок
Из постоянных нагрузок учитывают:
- нагрузку от веса мостового полотна:
- нагрузку от тротуаров и перил - нагрузку от веса пакетов:
4,6354
где - удельный вес древесины, кН/м3; 0,036 м2 - площадь сечения одного бруса в пакете, м2; - количество пакетов в поперечном сечении моста; - количество брусьев в одном пакете; 1,05 – коэффициент, учитывающий вес элементов, скрепляющих пакеты.
Нормативная временная вертикальная эквивалентная нагрузка от подвижного состава – С9.
158,7931
181,4800
3.2.3 Определение расчетных усилий
Расчетные усилия в пакете , кНм, и ,кН определяют с использованием линий влияния этих усилий по формулам:
,
.
где – коэффициент надежности по нагрузке к весу деревянных конструкций ; - коэффициент надежности по временной вертикальной нагрузке [1, п. 2.23*]; - количество пакетов в поперечном сечении моста; - динамический коэффициент [1, п. 2.22*]; – нормативная временная вертикальная нагрузка от подвижного состава железных дорог СК, кН/м: ; ; и - площади линий влияния и .
3.2.4 Расчет на прочность по нормальному напряжению
Геометрические характеристики сечения составной балки пакета.
Принятые размеры бруса пакета: ;
Принятые размеры колодки:
Схемы к определению геометрических характеристик составной балки пакета с соединением на металлических шпонках приведены на рисунке 2.2
Рис. 3.3 Расчетные схемы к определению геометрических характеристик: а – схема соединения; б – сечение балки брутто; в – сечение балки нетто
Сечение нетто.
Положение центра тяжести сечения нетто составной балки:
,
где – моменты инерции сечений соответственно первого, второго и третьего брусьев относительно осей, проходящих через их центры тяжести; – площади сечений брусьев, соответственно первого и третьего сечений,; - расстояния от оси, проходящей через центр тяжести среднего бруса, соответственно до оси, проходящей через центр нижнего и верхнего брусьев, м.
;
;
;