Курсовая работа: Проектирование гидропривода рыхлительного оборудования

Объемный КПД гидропривода рассчитывают из выражения

,(35)

где – объемный КПД насоса, ;

– объемный КПД распределителя, ;

– объемный КПД гидроцилиндра, .

Тепловой режим гидросистемы

Тепловой режим гидросистемы выполняется с целью определения установившейся температуры рабочей жидкости гидропривода, уточнения объема гидробака и поверхности теплоотдачи, а также выяснения необходимости применения теплообменников.

Как высокие, так и низкие температуры рабочей жидкости оказывают нежелательное влияние на работоспособность и производительность гидрофицированных машин. Поэтому весьма важно знать граничные температуры рабочей жидкости. Минимальная температура рабочей жидкости определяется температурой воздуха той климатической зоны, в которой эксплуатируется машина. Максимальная температура жидкости зависит от конструктивных особенностей гидросистемы, режима эксплуатации гидропривода и температуры окружающего воздуха.

Повышение температуры рабочей жидкости прежде всего связано с внутренним трением масла, особенно при дросселировании жидкости. Все потери мощности в гидросистеме в конечном итоге превращаются в тепло, которое аккумулируется в жидкости.

Количество тепла, получаемое гидросистемой в единицу времени, соответствует потерянной в гидроприводе мощности и определяется по формуле

,(36)

где – коэффициент эквивалентности;

– затраченная мощность привода насосов;

– коэффициент продолжительности работы гидропривода под нагрузкой.

Максимальная установившаяся температура рабочей жидкости определяется по формуле

,(37)

где – коэффициент теплоотдачи;

– суммарная площадь теплоизлучаемых поверхностей гидропривода, ;

– максимальная температура окружающего воздуха.

Площадь теплоизлучаемых поверхностей гидропривода находится из соотношения

,(38)

где – площадь поверхности гидробака, .

,(39)

где – емкость гидробака.

К-во Просмотров: 460
Бесплатно скачать Курсовая работа: Проектирование гидропривода рыхлительного оборудования