Курсовая работа: Проектирование кулачковых самоцентрирующих патронов
Сила Ру стремится вывернуть заготовку из кулачков.
Данному моменту препятствует момент от силы зажима
Необходимая сила зажима равна:
, где
d2 =102мм, Pу=854Н, f=0,4, l=105мм, К=2,52
Для дальнейших расчетов принимаем наихудший случай
W=12828.6H
Величина усилия зажима W1 прикладываемая к постоянным кулачкам несколько увеличивается по сравнению с усилием W и рассчитывается по формуле:
где lk - вылет кулачка, расстояние от середины рабочей поверхности сменного кулачка до середины направляющей постоянного кулачка.
Нк – длина направляющей постоянного кулачка, мм.
f – коэффициент трения в направляющих постоянного кулачка и корпуса
вс =30мм, - толщина сменного кулачка,
вк +вз =20+30=50мм, - толщина постоянного кулачка
Вк =40мм, - ширина направляющей постоянного кулачка
В1 =25мм, - ширина сменного кулачка
Нк =80мм
lk =62мм
f=0,1
Подставим исходные данные в формулу:
1.4 Расчет зажимного механизма патрона
Приступая к расчету зажимного механизма необходимо определиться с его конструкцией. В самоцентрирующих механизмах установочные элементы (кулачки) должны быть подвижными в направлении зажима и закон их относительного движения необходимо выдержать с высокой точностью. Поэтому на движение кулачков накладываются условия: разнонаправленность, одновременность и равная скорость движения. Данное условие можно выдержать, обеспечивая движение трех кулачков от одного источника движения.
В кулачковых патронах наибольшее применение получили рычажные и клиновые зажимные механизмы, движение которым передается центральной втулкой, связанной с силовым приводом.
Рычажный механизм представляет собой неравноплечий угловой рычаг, смонтированный в корпусе патрона на неподвижных осях, и которые своими сферическими концами входит с посадкой в пазы постоянного кулачка и центральной втулки.
При расчете зажимного механизма определяется усилие Q, создаваемое силовым приводом, которое зажимным механизмом увеличивается и передается постоянному кулачку