Курсовая работа: Проектирование зубчатого и кулачкового механизмов
Избраний вариант с k=3 и проверяется на выполнения условия соседства.
1.5 Кинематический анализ планетарного механизма
Определим радиусы начальных окружностей:
r1 = d1 /2 = m·Z1/2= 6·14/2=84/2 = 42 мм
r2 =d2 /2 = m·Z2/2= 6·30/2=180/2 = 90 мм
r3 = d3 /2 = m·Z3/2= 6·22/2 =132/2 = 66 мм
r4 = d4 /2 = m·Z4/2= 6·38/2=228/2 = 114 мм
r5 = d5 /2 = m·Z5/2= 6·98/2 =588/2 = 294 мм.
Выбираем масштабный коэффициент: . С учетом масштабного коэффициента построим кинематическую схему редуктора. На кинематической схеме условно изображаем один сателлит.
Вычислим скорость точки А, принадлежащей окружности колеса 1:
,
Где .
Va = ω1 ∙151∙
Выбираю .
Скорость точки А является касательной к начальной окружности колеса 1 – вектор изображающий скорость точки А. Отрезок Аа - линия распределения скоростей точек колеса 1. Из точки В провожу горизонтальную линию. Из точки а через точку провожу отрезок до пересечения с горизонтальной линией, проходящей через точку B. Полученный отрезок аb– линия распределения скоростей точек колес 2 и 3.
Строю диаграмму угловых скоростей:
.
Переношу на диаграмму угловых скоростей точку Р и распределения линейных скоростей параллельно самим себе.
Получаем угловые скорости колес графическим методом:
;
Проверим значения угловых скоростей аналитическим методом – методом Виллиса.
Механизм состоит из последовательно соединенных двух механизмов – простого и планетарного.
.
По методу Виллиса всем звеньям планетарного механизма дополнительно сообщаем скорость равную . Получаем обращенный механизм.
Передаточное отношение в обращенном механизме: