Курсовая работа: Проектування дільниці по відновленню кулачків розподільчого валу автомобіля ЗІЛ–130
При відновленні деталей скорочуються також витрати, пов'язані з обробкою деталей, тому що при цьому обробляються не всі деталі поверхні деталей, а лише те, які мають дефекти.
Відновлення деталей є одним з основних джерел підвищення економічної ефективності авторемонтного виробництва. Відомо, що основною статтею витрат, з яких складається собівартість капітального ремонту автомобілів, є витрати на придбання запасних частин. Ці витрати в даний час складають 40-60% від собівартості капітального ремонту автомобіля.
Їх можна значно скоротити за рахунок розширення відновлення деталей. Значення відновлення деталей полягає також у тому, що воно дозволяє зменшити потреби народного господарства у виробництві нових запасних частин.
1. Загальний розділ
1.1 Опис деталі та умов її роботи
Без процесу газообміну робота двигуна внутрішнього згорання неможлива. Залежно від порядку роботи циліндрів двигуна в строго певні моменти часу повинні відкриватися впускні клапани, пропускаючи всередину циліндрів горючу суміш або повітря, якщо наш мотор - дизель або з безпосереднім уприскуванням бензину.
Далі впускний клапан зобов'язаний закритися, щоб в умовах повної герметичності в циліндрі відбулося згорання. Потім з циліндра необхідно видалити відпрацьовані гази, а для цього знову-таки в певний момент часу потрібно відкрити випускний клапан. Нарешті, коли відпрацьовані гази "вилетіли в трубу", треба повернути випускний клапан в закрите положення. І так по кругу, поки двигун не буде заглушений.
Фази, зони, сектора
Моменти відкриття і закриття клапанів, виражені в градусах кута повороту колінчастого валу, називаються фазами газорозподілу. Однак управляє здійсненням фаз газорозподілу зовсім не колінчастий, а розподільний вал.
При цьому взаємне кутове розташування кулачків на распредвали залежить від порядку роботи циліндрів і загальної діаграми фаз газорозподілу двигуна. А ось виконання фаз газорозподілу кожним окремо взятим клапаном забезпечується геометричним профілем кулачка.Існує також прямий взаємозв'язок між профілем, висотою і швидкістю підйому клапана над сідлом, від яких залежить величина прохідного перерізу відповідного отвори в голівці циліндрів і обсяг потоку свіжого заряду і відпрацьованих газів.
У перерізі кулачок нагадує грушу.Є округлий потилицю і загострена край. Але наука виділяє на профілі кулачка чотири основні зони. Перша - той самий округлий потилицю, який називається сектором відпочинку. Що робить клапан, коли проти його штовхача проходить сектор відпочинку кулачка?Зрозуміло, "відпочиває", а саме: закритий і охолоджується, віддаючи голівці циліндрів тепло через притулену до сідла тарілку. Особливо важлива тривалість відпочинку для випускних клапанів, тарілки яких омиваються розпеченими відпрацьованими газами.
Наступна зона на кулачку - сектор прискорення.Від його профілю залежить, як швидко клапан піднімається. Чим швидше це відбувається, наприклад з впускним клапаном, тим краще для наповнення циліндра свіжим зарядом. Чи означає це ж, що, змінюючи профіль сектора прискорення впускного клапана, можна впливати на показники потужності двигуна показники, ніж, до речі, і користуються при проектуванні так звані спортивні розпредвалів. Однак позичково зі швидкістю підйому клапана на кулачок наростають навантаження від вужчому клапанної пружини. А навантаження ці, треба сказати, чималі - 2000 Н / кв. мм і вище. Тому профіль сектора прискорення - це завжди компроміс між бажанням отримати більше потужності і необхідністю не нашкодити довговічності.
Третя зона називається вершиною. Коли кулачок працює вершиною, клапан відкритий повністю. Ось тільки довго тримати його в такому положенні небажано. Клапан повинен ще встигнути закритися в термін, і необхідно, щоб посадка тарілки клапана в сідло була м'якою. Багаторазово ж повторювані удари ведуть до появи мікротріщин на фаску клапана і сідлі. Та й сили, що діють на кулачок з боку штовхача, в зоні вершини стають максимальними. Тому форма вершини кулачка, втім, як і зони посадки - останньої з чотирьох частин профілю, також є результатом деякого компромісу з довговічністю.
Поєднання компромісів - кулачок з профілем, що забезпечує найбільшу пропускну здатність клапана при найменших з можливих прискорень його підйому і посадки. Розподільні вали з такими кулачками, званими ненаголошених, використовуються в більшості автомобільних двигунів. Щоправда, в дійсності кулачок працює без ударів, тільки коли його поверхню постійно ковзає, не відриваючись від поверхні штовхача.
Як зношуються кулачки
Оскільки за умовами роботи чотиритактного двигуна потрібно, щоб за кожні два оберти колінчастого вала клапани тільки один раз відкривалися і закривалися, розподільчий вал кінематично пов'язаний з колінвалом так, що обертається з частотою в два рази меншою, ніж частота обертання колінвала.З точки зору зменшення зношування це добре.
Тим не менше зношування кулачків залишається основною причиною виходу розподілвалів з ладу. Сприяють ж зносу збільшені контактні напруги, які доводиться випробовувати кулачки.Але з якого дива величина контактних напруг може виявитися вище розрахункової?
Згадаймо, що в клапанному механізмі існує так званий теплової зазор. Він покликаний компенсувати подовження стрижня клапана через нагрівання. Якщо тепловий зазор давно не регулювався і тому великий, то між сектором відпочинку кулачка і штовхачем відсутній контакт, через що при подальшому обертанні кулачок не плавно натискає на штовхач, а з силою б'є по ньому боковою поверхнею. Зовнішній прояв таких повторюваних ударів - характерний шум, що виникатиме з-під клапанної кришки. Ділянка переходу сектора відпочинку в сектор прискорення - другий після вершини з найбільш уразливих на кулачку.При збільшеному тепловому зазорі перші мікроразрушенія на кулачку можуть з'явитися в цьому місці, а потім процес прогресує.
Гідрокомпенсатори теплових зазорів, що представляють собою, по суті, два поршенька, розсовуємо тиском масла, вирішують цю проблему, але тільки до тих пір, поки самі залишаються справними. А підклинює гидротолкателі можуть при засміченні системи змащення й наявності в олії сторонніх включень. При заклинюванні гідроштовхачем найбільше дістається вершині кулачки.
1.2 Матеріал деталі
Кулачки розподільчого валу виготовляють із чугуна твердістю 55-62 HRC, шороховатість 8-го класу.
Чавун - сплав заліза з вуглецем (змістом звичайно більш 2,14%), що характеризується евтектічесім перетворенням. Вуглець у чавуні може міститися у вигляді цементиту і графіту. Залежно від форми графіту та кількості цементиту, виділяють: білий, сірий, ковкий і високоміцні чавуни.Чавуни містять постійні домішки (Si, Mn, S, P), а в деяких випадках також легуючі елементи (Cr, Ni, V, Al та ін). Як правило, чавун крихкий.
1.3 Принцип процесу надзвукового плазмового напилення
Зупинимося на деяких характерних рисах плазмового напилювання з використанням надзвукових струменів, оскільки цей метод є найбільш передовим і має ряд істотних переваг. Додавання метану або пропан-бутану до повітря, використання газоповітряної суміші в якості плазмо утворюючого газу, робить високотемпературний ділянку плазмового струменя, в якому відбувається нагрівання й прискорення частинок порошку, більш протяжним, а профіль температур і швидкостей більше заповненим. Це відіграє вирішальну роль у поліпшенні якості покриттів і підвищення продуктивності процесу напилювання. Характер траєкторії часток порошку при бічному вдув в зносячи плазмову струмінь залежить від градієнта швидкості в ній. Висока швидкісна і температурна нерівномірність по перерізу порошкового потоку у плазмовій струмені при подачі під зріз сопла плазматрона обумовлена властивостями плазмового струменя. Траєкторія польоту частинок визначається безліччю факторів. Профіль швидкостей і температур для плазми продуктів згорання характеризується меншою неоднорідністю, тому порошковий потік глибше проникає в струмінь, відбувається більш рівномірний нагрів всіх частинок, незалежно від траєкторії їх польоту. У плазмі продуктів згоряння (незалежно від траєкторії польоту, розмірів і форми частинок) аеродинамічний і теплове вплив на неї більш рівномірно.
Висока тепловіддача до часток порошку і кращі розгінні властивості плазми продуктів згорання в порівнянні з повітряного або азотної вимагають коректування часу перебування частинок порошку в високотемпературної зоні, оптимальний нагрів забезпечується при більш високих швидкостях. Для цього необхідно збільшувати витрату газу або зменшувати діаметр сопла. Підвищена швидкість частинок і рівномірний їх прогрів по всьому перетину забезпечують підвищення щільності і міцності зчеплення покриття з основою.
Профіль швидкостей і температур частинок у поперечному перерізі плями напилювання в момент контакту з основою характеризується меншою неоднорідністю в порівнянні з напилюванням в інертних газах. Тому при відносному переміщенні плазматрона і деталі на поверхню останньої завжди потрапляють частинки з високим енергетичним рівнем. Завдяки цьому периферійні частинки, що беруть участь у формуванні покриття, не так погіршують якість, що сприяє більш сприятливому розподілу міцності зчеплення та пористості покриття по плямі напилювання.
У плазмі продуктів згорання периферійні частинки досягають основи з більш високим енергетичним рівнем. Це особливо важливо при формуванні першого осадження моношару покриття, відповідального за адгезійну міцність зчеплення. Поліпшуються також інтегральні показники якості покриттів.