(1.5)
Саме ця формула є вихідною для побудови багатьох чисельних методів розв’язування задачі (1.1) - (1.2).Якщо інтеграл у правій частині формули (1.5) обчислити за формулою лівих прямокутників, то знайдемо
(1.6)
Відкинувши в цій рівності доданок порядку О(h2 ), дістанемо розрахункову формулу:


(1.7)
яку називають формулою Ейлера. уk i y(xk ) – відповідно наближене і точне значення шуканого розв’язку задачі (1.1) і (1.2) у точці хk . Різницю уk -y(xk ) називають похибкою наближеного значення уk у точці xk.
Оскільки дотична до графіка функція у(х) в точці (xk ,yk ) матиме вигляд:
або 
Звідси для ординати точки уk+1 перетину цієї дотичної з прямою х=хk+1 дістанем формулу (1.7), а це означає, що на кожному з відрізків [xk ,xk+1 ], (k=0, 1, 2, ..., n-1 ) інтегральна крива наближено замінюється відрізком дотичної до неї в точці (xk ,yk ). Якщо в площині Оху позначити точки Мk (xk ;yk ), k=0, 1, 2,...,n і сполучити їх по порядку відрізками, то дістанемо ламану (її називають ламаною Ейлера), яка наближено зображує графік шуканого розв’язку задачі (1.1) – (1.2). У цьому і полягає геометричний зміст методу Ейлера (див. рис. 1)








Зазначимо, що похибка методу Ейлера на кожному кроці є величина порядку О(h2 ). Точність методу досить мала і переходом від точки xk до точки xk+1 її похибка систематично зростає.
Виправлений метод Ейлера.
Якщо інтеграл у правій частині формули (1.5) обчислити за формулою середніх прямокутників, тобто значення підінтегральної функції f(x,y(x)) обчислити в точці
, то знайдемо
(1.8)
Величину невідомого значення функції у(
) обчислимо за формулою (1.6) з кроком
. Матимемо:

Підставивши це значення у(
) в (1.8), дістанемо

Відкинувши тут доданок пропорційний h3 , матимемо


Розрахункові формули вдосконаленого методу Ейлера можна записати у вигляді

Отже, в удосконаленому методі Ейлера спочатку за метод Ейлера обчислюють наближений розв’язок у
задачі (1.1)-(1.2) в точці
а потім наближений розв’язок уk+1 у точці хk+1 ; на кожному кроці інтегрування праву частину рівняння (1.1) обчислюють двічі (у точках (хk ,уk ) і (
)).
Геометрично це означає, що на відрізку [xk ,xk+1 ] графік інтегральної кривої задачі (1.1)-(1.2) замінюється відрізком прямої, яка проходить через точку (xk ,yk ) і має кутовий коефіцієнт k=
. Іншими словами, ця пряма утворює з додатним напрямом осі Ох кут
.
xk+ | |
Yk+ | |
Що ж до точки (
), то це точка перетину дотичної до інтегральної кривої задачі (1.1)-(1.2) в точці (хk ,yk ) з прямою
Похибка на кожному кроці має порядок О(h3 ) .
К-во Просмотров: 270
Бесплатно скачать Курсовая работа: Програма розв’язання звичайних диференціальних рівнянь однокроковими методами