Курсовая работа: Програма розв’язання звичайних диференціальних рівнянь однокроковими методами
Рисунок 5.
Висновки
В даній курсовій роботі я ознайомився з однокроковими методами розв’язання звичайних диференціальних рівнянь. Завдяки їй я остаточно розібрався застосовуванням цих методів до розв’язання диференціальних рівнянь вищих порядків на прикладі рівняння другого порядку.
Література
1. Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. – Томск: МП «Раско», 1991. – 272 с.
2. Бортків А.Б., Гринчишин Я.Т. Turbo Pascal: Алгоритми і програми: чисельні методи в фізиці і математиці. Навчальний посібник. – К.: Вища школа, 1992. – 247 с.
3. Квєтний Р.Н. Методи комп’ютерних обчислень. Навчальний посібник. – Вінниця: ВДТУ, 2001 – 148 с.
Додаток
Лістинг програми
#include<stdio.h>
#include<conio.h>
#include<math.h>
#include<graphics.h>
float f(float x,float y,float z)
{return 0.7*z+x*y+0.7*x;}
float h1=0.1;
float h2=0.05;
float a=0;
float b=1;
float x2[21],ye2[21],ym1[11],zm2[21],ym2[21],ye1[11];
float ze1[11],zm1[11],ze2[21],x1[11],yi1[11],yi2[21];
float zi1[11],zi2[21];
int n1=(b-a)/h1;
int n2=(b-a)/h2;
void eylermod()
{// printf("[0] %5.2f %5.2f %5.2f",x2[0],y2[0],z2[0]);
// moveto((x2[0])*100,480-((ym2[0])*100));
for(int i=1;i<=n2+1;i++)
{x2[i]=x2[i-1]+h2;
ze2[i]=ze2[i-1]+h2*f(x2[i-1],ye2[i-1],ze2[i-1]);
ye2[i]=ye2[i-1]+h2*ze2[i-1];