Курсовая работа: Программирование системы уравнений

где считаем малой величиной. Применяя формулу Тейлора, получим:

Следовательно,

Внеся эту поправку в формулу (1), найдем следующее (по порядку) приближение корня

(2)

Геометрически метод Ньютона эквивалентен замене дуги кривой касательной, проведенной в некоторой точке кривой. В самом деле, положим для определенности, что при и (см. рис.).

Выберем, например, , для которого . Проведем касательную к кривой в точке B0 с координатами.

В качестве первого приближения корня возьмем абсциссу точки пересечения касательной с осью Ox. Через точку снова проведем касательную, абсцисса точки пересечения которой даст второе приближение корня и т.д.

Формулу для уточнения корня можно получить из прямоугольного треугольника , образованного касательной, проведенной в точке , осью абсцисс и перпендикуляром, восстановленным из точки .

Имеем

Так как угол образован касательной и осью абсцисс, его тангенс численно равен величине производной, вычисленной в точке, соответствующей абсциссе точки касания, т.е.

Тогда

или для любого шага n

.

В качестве начальной точки можно принять либо один из концов отрезка [a, b], либо точку внутри этого интервала. В первом случае рекомендуется выбирать ту границу, где выполняется условие

т.е. функция и ее вторая производная в точке должны быть одного знака.

В качестве простейших условий окончания процедуры уточнения корня рекомендуется выполнение условия

Как следует из последнего неравенства, требуется при расчете запоминать три значения аргумента . В практических инженерных расчетах часто применяют сравнение аргументов на текущей и предыдущей итерациях:

При составлении программы решения уравнения методом Ньютона следует организовать многократный расчет приближений для корня. Если удается получить аналитическое выражение для производной, то ее вычисление, а также вычисление можно оформить в виде функций.


4 Разработка блок схемы решения системы уравнения методом Гаусса



5 Разработка блок схемы решения уравнения методом Ньютона


К-во Просмотров: 415
Бесплатно скачать Курсовая работа: Программирование системы уравнений