Курсовая работа: Производство и переработка масличного сырья

Отрасль переработки пластмасс находится в стадии структурной перестройки. Будучи самым тесным образом связанной со всеми отраслями хозяйства страны, проникая во все сферы хозяйственной жизни, она успешно преодолевает как последствия общего падения производства в России, так и конкуренцию со стороны импортной готовой продукции (таблица 1).

Таблица 1.

Динамика производства важнейших видов продукции по переработки пластмасс в России (тыс. т)

Наименование важнейших

видов продукции

2000 г. 2002 г. 2004 г. 2005 г.
Пленки полимерные 275,5 97,6 94,7 97,1
Трубы и детали трубопроводов из термопластов 107,7 28,2 31,0 32,4
Листы и рулонные материалы 60,6 16,1 9,7 2,6
Изделия из пластмасс 699,2 180,3 136,1 136,9

Узость отечественного ассортимента выпускаемого сырья с одной стороны сдерживала развитие отрасли переработки пластмасс, а с другой стимулировала импорт сырья. В настоящее время в связи с повышением цен на импортное сырье и материалы открылась возможность для отечественных производителей увеличивать выпуск продукции. По предварительным оценкам выпуск смол и пластмасс в России в 2005г. увеличился на 2-3% по сравнению с 2004г.

Спрос на продукцию из пластмасс на рынке внутри России не снижается, и собственное производство продукции переработки пластмасс продолжает развиваться особенно в условиях роста цен па импортную продукцию.

Можно выделить несколько основных направлений, по которым идет создание современных новых мощностей в России:

1. Создание новых мощностей по переработке пластмасс на современном зарубежном оборудовании частными фирмами и акционерными обществами для обеспечения пищевых отраслей упаковочными, обвязочными и т.п. материалами.

2. Развивается производство тары (бутылок) для индивидуальной упаковки воды, масла, соков и прочих пищевых жидкостей. В РФ фактически возникла целая специализированная отрасль по выпуску преформ и выдувных изделий.

В связи с продолжающимся строительным бумом возник целый ряд новых направлений в производстве строительных материалов и комплектующих изделий.

Современный научно-технический прогресс в различных отраслях промышленности базируется на широком использовании различных типов полимерных материалов. К приоритетным представителям масштабных полимерных материалов относятся полиолефины. Им определяется особое место в спектре продукции и технологическом реформировании химической отрасли [1,2.]. Это связано с уникальными свойствами основных представителей полиолефинов - полиэтилена (ПЭ) и полипропилена (ПП), у которых малая плотность и высокая химическая инертность сочетаются с повышенными механическими свойствами и другими качественными характеристиками. Поэтому продолжение исследований в этой области является актуальным.


1. Наполнение, как метод модификации полимеров

В качестве наполнителей термо - и реактопластов чаще всего применяют твердые вещества: дисперсные (порошкообразные) или волокнистые в виде волокон, нитей, жгутов, холстов, нетканых материалов, тканей, бумаги, пленок, сеток, шпона. И композиционные материалы называют дисперсно-наполненными и волокноармированными.

В связи с эффектами, достигаемыми при введении наполнителей в полимерную матрицу, существует условное разделение наполнителей на активные, то есть усиливающие (в основном, улучшающие физико-механические свойства) и неактивные, и при введении которых происходит изменение цвета материала, снижается его стоимость, но не наблюдается заметного улучшения свойств материала.

По химической природе дисперсные наполнители подразделяют на:

- минеральные (неорганические)- мел, каолин, тальк, слюда,

-силикаты (асбест, вермикулит, пемза), порошки металлов или их сплавов и другие

-органические - древесная мука, мука из скорлупы орехов, сажа (технический углерод), кокс, графит и другие.

К неорганическим волокнистым наполнителям относят: стеклянные, борные, асбестовые волокна; волокна из кварца базальта, керамики, молибдена и вольфрама.

К природным органическим волокнам относят: хлопок, лен, джут, рами.

Химическими волокнами являются: полиамидное, полиэфирное, полиакрилонитрильное, вискозное, полиолефиновое (из полиэтилена и полипропилена), полиимидное, углеродное, стеклянное.

В зависимости от текстильной структуры волокнистых армирующих систем композиционные материалы на их основе подразделяют на волокиты (холсты, маты), текстолиты (ткани), гетинаксы (бумага).

В зависимости от химической природы наполнителей композиционные материалы подразделяют на: стеклопластики, асбопластики (асбест), древесно-слоистые пластики (древесный шпон), органопласты (химические, кроме стеклянного или природные волокна), углепластики (углеродные волокна), боропласты (борные волокна).

По величине свободной поверхностной энергии наполнители бывают: с высокой энергией поверхности (металлы, оксиды металлов и другие неорганические наполнители); низкой (полимерные волокна и дисперсные органические наполнители).

Величина поверхностной энергии является важной характеристикой, поскольку характер межфазного взаимодействия зависит от соотношения величин поверхности энергии матрицы и наполнителя.[3]

Разнообразие наполнителей, рекомендуемых многочисленными продуцентами для производства современных композиционных материалов, нередко затрудняет их выбор.

Отсутствие единой системы показателей качества наполнителей, а также использование различных стандартов, методик и инструментальной базы измерений, усложняет потребителю принятие объективного решения при выборе подходящей марки наполнителя. Главная причина недоразумений в разночтении, приводимых в технической или рекламной информациях, терминов, характеристик, показателей и методик их определения.

Используемые в настоящее время приборы для измерения размера частиц и плотности их распределения нередко дают значительные расхождения при измерении одних и тех же образцов. Это связано как с различными методами изме­рения (седиментационными, дифракционными, оптичес­кими и др.), так и особенностями приборов различных фирм, хотя и относящихся к одному типу (принципу измерения).

Предварительная специальная поверхностная обработка наполнителей не только облегчает процесс диспергирования, но создает благоприятные условия для физико-химического взаимодействия модифицированной поверхности наполнителя с полимером, обеспечивая в ряде случаев, существенное улучшение физико-механических свойств. Таким образом, повышение качества и конкурентоспособности современных композитов, наряду с использованием активных наполнителей, может быть существенно продвинуто за счёт использования наполнителей с органомодифицированной поверхностью, обеспечивающих оптимизацию свойств пластиков при производстве и переработке в изделия.[4]

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 211
Бесплатно скачать Курсовая работа: Производство и переработка масличного сырья