Курсовая работа: Проверка гипотезы о законе распределения генеральной совокупности X по критерию Пирсона
=100
=1
Где -плотность относительной частоты
-середина частичных интервалов
4. Построение гистограммы
Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длины , а высоты равны отношению – плотность частоты (или – плотность частности).
По данным таблицы 4 строим гистограмму (рис. 1).
Гистограмма частот является статистическим аналогом дифференциальной функции распределения (плотности) случайной величины Х. Площадь гистограммы равна единице.
Выдвижение гипотезы о законе распределения генеральной совокупности
По данным наблюдений статистическое среднее и выборочное среднее квадратическое отклонение у* по значению почти совпадают. Учитывая данный факт, а также вид гистограммы можно предположить, что случайная величина имеет равномерное распределение.
По виду гистограммы выдвигаем гипотезу о равномерном законе распределения генеральной совокупности Х.
5. Оценка числовых характеристик и параметров закона распределения
Оценками математической статистики называют приближенные значения числовых характеристик или параметров законов распределения генеральной совокупности Х вычисленные на основе выборки.
Оценка называется точечной, если она определяется числом или точкой на числовой оси.
Оценка (как точечная, так и интервальная) является случайной величиной, так как она вычисляется на основе экспериментальных данных и является функцией выборки.
При вычислении точечных оценок для удобства берут не сами элементы выборки, а середины частичных интервалов из интервального вариационного ряда (табл. 1) и применяют формулы:
где n - объем выборки, – i-й элемент выборки
Составим таблицу для нахождения и
Таблица 4
i |
|
|
1 |
|
8.5*14=119 |
2 |
|
18.5*6=111 |
К-во Просмотров: 389
Бесплатно скачать Курсовая работа: Проверка гипотезы о законе распределения генеральной совокупности X по критерию Пирсона
|