Курсовая работа: Проверка гипотезы о законе распределения генеральной совокупности X по критерию Пирсона
101,10
9,27
20,50
36,39
43,61
51,36
65,71
76,59
84,27
92,81
102,21
3. Построение интервального вариационного ряда
Опытные данные объединяем в группы так, чтобы в каждой отдельной группе значения вариант будут одинаковы, и тогда можно определить число, показывающее, сколько раз встречается соответствующая варианта в определенной (соответствующей) группе.
Численность отдельной группы сгруппированного ряда опытных данных называется выборочной частотой соответствующей варианты x(i) и обозначается mi; при этом , где n – объем выборки.
Отношение выборочной частоты данной варианты к объему выборки называется относительной выборочной частотой и обозначается Pi*,
т.е. – число (частота) попаданий значений X в i-й разряд, n – объем выборки.
Т.к. согласно теореме Бернулли имеем, что т.е. выборочная относительная частота сходится по вероятности соответствующей вероятности, тогда из условия:
Интервальным вариационным рядом распределения называется упорядоченная совокупность частичных интервалов значений С.В. с соответствующими им частотами или относительными частотами.
Для построения интервального вариационного ряда выполняем следующие действия.
1. Находим размах выборки R = xmax – xmin. Имеем R = 102,21-3,59=98,62 .
2. Определяем длину частичного интервала ∆ – шаг разбиения по формуле Стерджеса: где n – объем выборки, К– число частичных интервалов . ,
3. ∆=10
4. Определяем начало первого частичного интервала
После разбиения на частичные интервалы просматриваем ранжированную выборку и определяем, сколько значений признака попало в каждый частичный интервал, включая в него те значения, которые ≥ нижней границы и меньше верхней границы. Строим интервальный вариационный ряд (табл. 3).
Таблица 3
Разряды
|
mi |
|
|
= | |
К-во Просмотров: 377
Бесплатно скачать Курсовая работа: Проверка гипотезы о законе распределения генеральной совокупности X по критерию Пирсона
|