Курсовая работа: Проверка истинности моделей множественной регрессии

то можно говорить о статистической значимости и надёжности уравнения регрессии.

5. Сравнивая частные F – критерии фактические с пороговой константой Fтабл =4,21, делаем вывод: Fх2факт =12,95 > Fтабл , следовательно статистически подтверждена целесообразность включения в модель динамики валового накопления основного капитала, после числа студентов, т.к. этот фактор оказывает большее влияние.

Построение парных моделей регрессии

Представим данные полученные при построении парных моделей в таблице:

Модель Aср. r (ρ) Уравнение Fфакт
Линейная 10,89 0,5353 у=102,38+0,201х1 11,24
Степенная 11,008 0,4934 у=38,26×х1 0,2481 9,01
Показательная 10,47 0,5350 у=106,53×1,001х1 11,23
Гиперболическая 12,59 0,3786 у=165,92-4546,04/х1 4,68

Определение лучшей модели

1. Недопустимую ошибку аппроксимации имеют все 4 модели, однако у показательной модели она наименьшая, это говорит о том что линейная модель лучше аппроксимирует исходные данные чем остальные модели.

2. У линейной модели теснота связи самая сильная по сравнению с другими моделями. Это говорит о том, что показательная модель лучше подходит к нашим данным.

3. Проверив гипотезу о стат. значимости и надежности, получив значения Fфакт больше табличного во всех случаях, получаем, что все 4 уравнения являются стат. значимыми и надежными. Хотя линейная модель имеет наибольшее Fфакт по сравнению с другими моделями, это говорит о большей точности линейной модели.

По двум показателям линейная модель лучше остальных, это говорит о том, что линейная модель лучше аппроксимирует исходные данные. Однако множественная модель, на мой взгляд, лучше аппроксимирует данные, чем линейная, потому что множественная модель имеет допустимую ошибку аппроксимации и большую тесноту связи.

Проверка предпосылок МНК

1.Первую предпосылку проверим путём вычисления суммы значений остатков:

x1 x2 y x1x2 yx1 yx2 y^x y-y^x
64 103 131,2 6592 8396,8 13513,6 126,48 4,72
50 169 123 8450 6150 20787 137,56 -14,56
29 115 117 3335 3393 13455 122,09 -5,09
22 103,4 177,3 2274,8 3900,6 18332,82 118,28 59,02
34 263,5 184,1 8959 6259,4 48510,35 154,21 29,89
195 162,2 164,9 31629 32155,5 26746,78 164,75 0,15
39 120 115 4680 4485 13800 125,11 -10,11
42 178 139 7476 5838 24742 137,87 1,13
28 102 110 2856 3080 11220 119,17 -9,17
42 112,4 169,3 4720,8 7110,6 19029,32 124,11 45,19
40 134 114 5360 4560 15276 128,25 -14,25
34 125 111 4250 3774 13875 125,18 -14,18
61 126,7 163,4 7728,7 9967,4 20702,78 130,86 32,54
42 156 121 6552 5082 18876 133,25 -12,25
46 83,3 134,7 3831,8 6196,2 11220,51 118,80 15,90
15 420 184 6300 2760 77280 183,27 0,73
22 175 122 3850 2684 21350 133,29 -11,29
33 129 119 4257 3927 15351 125,82 -6,82
47 130 120 6110 5640 15600 128,79 -8,79
54 154 140 8316 7560 21560 135,20 4,80
34 134,1 129,1 4559,4 4389,4 17312,31 127,08 2,02
32 132 115 4224 3680 15180 126,25 -11,25
38 146 122 5548 4636 17812 130,37 -8,37
58 143 117 8294 6786 16731 133,69 -16,69
21 143,5 116,4 3013,5 2444,4 16703,4 126,49 -10,09
51 122,6 122,7 6252,6 6257,7 15043,02 128,03 -5,33
58 154 130 8932 7540 20020 135,99 -5,99
36 129 115 4644 4140 14835 126,41 -11,41
48 129 121 6192 5808 15609 128,78 -7,78
32 91 105 2912 3360 9555 117,65 -12,65
сумма 0,0000

2.Случайный характер остатков. Проверим графически:

Из графика зависимости остатков εi от теоретических значений результативного признака видно, что точки распределены случайно, следовательно, εi представляют собой случайные величины и МНК оправдан.

3. Наличие гомоскедастичности. Воспользуемся методом Гольдфельда – Квандта. Число исключаемых центральных наблюдений примем равным 8. Тогда в каждой группе будет по 11 наблюдений. Результаты расчетов представим в таблице:

x1 x2 y x1x2 yx1 yx2 y^x y-y^x Ai (y-y^x)^2
46 83,3 134,7 3831,8 6196,2 11220,51 132,15 2,55 1,8961 6,52
32 91 105 2912 3360 9555 128,41 -23,41 22,2973 548,13
28 102 110 2856 3080 11220 127,98 -17,98 16,3451 323,27
64 103 131,2 6592 8396,8 13513,6 139,08 -7,88 6,0058 62,09
22 103,4 177,3 2274,8 3900,6 18332,82 126,24 51,06 28,7972 2606,87
42 112,4 169,3 4720,8 7110,6 19029,32 133,02 36,28 21,4308 1316,41
29 115 117 3335 3393 13455 129,22 -12,22 10,4468 149,40
39 120 115 4680 4485 13800 132,65 -17,65 15,3447 311,40
51 122,6 122,7 6252,6 6257,7 15043,02 136,51 -13,81 11,2549 190,71
34 125 111 4250 3774 13875 131,48 -20,48 18,4460 419,23
61 126,7 163,4 7728,7 9967,4 20702,78 139,87 23,53 14,4012 553,73
0,0000 15,1514 6487,74
x1 x2 y x1x2 yx1 yx2 y^x y-y^x Ai (y-y^x)^2
21 143,5 116,4 3013,5 2444,4 16703,4 119,32 -2,92 2,5060 8,51
38 146 122 5548 4636 17812 124,14 -2,14 1,7530 4,57
58 154 130 8932 7540 20020 131,22 -1,22 0,9407 1,50
54 154 140 8316 7560 21560 130,25 9,75 6,9625 95,01
42 156 121 6552 5082 18876 127,90 -6,90 5,7020 47,60
195 162,2 164,9 31629 32155,5 26746,78 166,75 -1,85 1,1203 3,41
50 169 123 8450 6150 20787 133,47 -10,47 8,5103 109,57
22 175 122 3850 2684 21350 128,35 -6,35 5,2041 40,31
42 178 139 7476 5838 24742 134,04 4,96 3,5697 24,62
34 263,5 184,1 8959 6259,4 48510,35 155,95 28,15 15,2883 792,18
15 420 184 6300 2760 77280 195,01 -11,01 5,9854 121,29
0,0000 5,2311 1248,57

Величина R=0,1924 (1248,57/6487,74), меньше табличного значения F-критерия, следовательно, наличие гомоскедастичности и отсутствие гетероскедастичности.

4.Отсутствие автокорреляции. Тест Дарбина–Уотсона:

x1 x2 y y^ lу-у^l (lу-у^l/у)*100 у-у^ ei-ei-1 (ei-ei-1)^2 (у-у^)^2
64 103 131 126,48 4,715497 3,594 -4,715 -4,7155 22,2 22,24
50 169 123 137,56 14,55865 11,836 14,559 19,27414 371,5 211,95
29 115 117 122,09 5,093094 4,353 5,093 -9,46555 89,6 25,94
22 103 177 118,28 59,02032 33,288 -59,020 -64,1134 4110,5 3483,40
34 264 184 154,21 29,88682 16,234 -29,887 29,13349 848,8 893,22
195 162 165 164,75 0,151302 0,092 -0,151 29,73552 884,2 0,02
39 120 115 125,11 10,11485 8,796 10,115 10,26615 105,4 102,31
42 178 139 137,87 1,133281 0,815 -1,133 -11,2481 126,5 1,28
28 102 110 119,17 9,170267 8,337 9,170 10,30355 106,2 84,09
42 112 169 124,11 45,18646 26,690 -45,186 -54,3567 2954,7 2041,82
40 134 114 128,25 14,24733 12,498 14,247 59,43379 3532,4 202,99
34 125 111 125,18 14,17636 12,771 14,176 -0,07097 0,0 200,97
61 127 163 130,86 32,53879 19,914 -32,539 -46,7152 2182,3 1058,77
42 156 121 133,25 12,25437 10,128 12,254 44,79316 2006,4 150,17
46 83,3 135 118,80 15,89794 11,802 -15,898 -28,1523 792,6 252,74
15 420 184 183,27 0,725914 0,395 -0,726 15,17202 230,2 0,53
22 175 122 133,29 11,29077 9,255 11,291 12,01669 144,4 127,48
33 129 119 125,82 6,817621 5,729 6,818 -4,47315 20,0 46,48
47 130 120 128,79 8,790167 7,325 8,790 1,972546 3,9 77,27
54 154 140 135,20 4,796736 3,426 -4,797 -13,5869 184,6 23,01
34 134 129 127,08 2,015804 1,561 -2,016 2,780932 7,7 4,06
32 132 115 126,25 11,24923 9,782 11,249 13,26503 176,0 126,55
38 146 122 130,37 8,368454 6,859 8,368 -2,88077 8,3 70,03
58 143 117 133,69 16,68649 14,262 16,686 8,318035 69,2 278,44
21 144 116 126,49 10,08938 8,668 10,089 -6,59711 43,5 101,80
51 123 123 128,03 5,32814 4,342 5,328 -4,76124 22,7 28,39
58 154 130 135,99 5,992662 4,610 5,993 0,664522 0,4 35,91
36 129 115 126,41 11,40967 9,921 11,410 5,417008 29,3 130,18
48 129 121 128,78 7,777864 6,428 7,778 -3,63181 13,2 60,50
32 91 105 117,65 12,65349 12,051 12,653 4,875628 23,8 160,11
19110,43 10002,65

Исходя из статистики Дарбина-Уотсона, можно сделать вывод, что автокорреляция отсутствует, так как 1,91 находится в промежутке (1,339;2,661) (d2 ; 4-d2 ). Следовательно, значения остатков распределены независимо друг от друга. Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии.

Таким образом, не все предпосылки выполнились, это говорит о недостаточной надежности уравнения множественной регрессии. Возможно, можно было бы и получить надежную модель, если исключить из данных страны значение динамики ВВП, которых сильно отличается от других.

К-во Просмотров: 134
Бесплатно скачать Курсовая работа: Проверка истинности моделей множественной регрессии