Курсовая работа: Расчет измерительных преобразователей. Полупроводниковый диод

И – туннельные диоды;

Ф – фотодиоды;

Л – светодиоды;

Ц – выпрямительные столбы и блоки.

III – три цифры – группа диодов по своим электрическим параметрам (приведены в таблице 1).

IV – модификация диодов в данной (третьей) группе.


а) выпрямительные, высокочастотные, СВЧ, импульсные и диоды Гана; б) стабилитроны; в) варикапы; г) тоннельные диоды; д) диоды Шоттки; е) светодиоды; ж) фотодиоды; з) выпрямительные блоки

Рисунок 1 – Условное графическое обозначение

Таблица 1. Кодовая маркировка полупроводниковых приборов в соответствии с ГОСТ 10862-72

1-й элемент Исходный материал 2-й элемент Подкласс прибора 3-й элемент Группа внутри подкласса
Г или 1 Германий Д Выпрямительные диоды 101-399 Диоды выпрямительные малой мощности (Iпр.ср.<0,3A)
К или 2 Кремний 201-299 Диоды выпрямительные средней мощности (0,3
А или 3 Арсенид галлия или другие соединения галлия 301-399 Импульсные
401-499 Диоды импульсные с временем восстановления (tвос.обр.>150 нс)
501-599 Диоды импульсные с временем восстановления 30 нс
601-699 Диоды импульсные с временем восстановления 5 нс
701-799 Диоды импульсные с временем восстановления 1 нс
801-899 Диоды импульсные с временем восстановления <1 нс
Ц Выпрямительные столбы и блоки 101-199 Выпрямительные столбы малой мощности (Iпр.ср.<0,3A)
201-299 Выпрямительные столбы средней мощности (0,3
301-399 Выпрямительные блоки малой мощности (Iпр.ср.<0,3A)
401-499 Выпрямительные блоки средней мощности (0,3
А Сверхвысокочастотные диоды 101-199 Смесительные
201-299 Детекторные
301-399 Модуляторные
401-499 Параметрические
501-599 Регулирующие
601-699 Умножительные
701-799 Генераторные
B Варикапы 101-199 Подстроечные
201-299 Умножительные
И Диоды туннельные и обращенные 101-199 Усилительные
201-299 Генераторные
301-399 Переключающие
401-499 Обращенные
С Стабилитроны и стабисторы 201-299 Стабилитроны малой мощности (до 0,3 Вт) от 10 до 99 В
301-399 Стабилитроны малой мощности (до 0,3 Вт) от 100 до 199 В
401-499 Стабилитроны средней мощности (от 0,3 до 15 Вт) от 0,1 до 9,9 В
501-599 Стабилитроны средней мощности (от 0,3 до 15 Вт) 10 от до 99 В
601-699 Стабилитроны средней мощности (от 0,3 до 15 Вт) от 100 до 199 В
701-799 Стабилитроны большой мощности (от 5 до 25 Вт) от 0,1 до 9,9 В
801-899 Стабилитроны большой мощности (от 5 до 25 Вт) от 10 до 99В
901-999 Стабилитроны большой мощности (от 5 до 25 Вт) от 100 до 199В
Л Излучатели 101-199 Инфракрасного излучения
201-299 Видимого излучения с яркостью менее 500 кд/м2
301-399 Видимого излучения с яркостью более 500 кд/м2
Н Динисторы 101-199 Динисторы малой мощности со средним током в открытом состоянии менее 0,3 А
201-299 Динисторы средней мощности со средним током в открытом состоянии от 0,3 до 10 А
У Тиристоры 101-199 Тиристоры малой мощности со средним током в открытом состоянии менее 0,3 А
201-299 Тиристоры средней мощности со средним током в открытом состоянии от 0,3 до 10 А
301-399 Запираемые тиристоры малой мощности с запираемым током менее 0,З А
401-499 Запираемые тиристоры средней мощности с запираемым током от 0,3 до 10 А
501-599 Симисторы малой .мощности с действующим током до 0,3 А
601-699 Симисторы средней мощности с действующим током от 0,3 до 10 А

3. Общий принцип действия

В полупроводнике n-типа основными носителями свободного заряда являются электроны; их концентрация значительно превышает концентрацию дырок (nn >> np ). В полупроводнике p-типа основными носитялеми являются дырки (np >> nn ). При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу (рис.1). Пограничная область раздела полупроводников с разными типами проводимости (так называемый запирающий слой) обычно достигает толщины порядка десятков и сотен межатомных расстояний. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение Uз, приблизительно равное 0,35 В для германиевых n–p-переходов и 0,6 В для кремниевых.

n–p-переход обладает удивительным свойством односторонней проводимости.

Рисунок 1 - Образование запирающего слоя при контакте полупроводников p- и n-типов.


4. Конструкция полупроводниковых диодов

Основой плоскостных и точечных диодов является кристалл полупроводника n-типа проводимости, который называется базой транзистора. База припаивается к металлической пластинке, которая называется кристаллодержателем.

Для плоскостного диода на базу накладывается материал акцепторной примеси и в вакуумной печи при высокой температуре (порядка 500 °С) происходит диффузия акцепторной примеси в базу диода, в результате чего образуется область p-типа проводимости и p-n переход большой плоскости (отсюда название). Вывод от p-области называется анодом, а вывод от n-области – катодом (рис. 2).

Рисунок 2

Большая плоскость p-n перехода плоскостных диодов позволяет им работать при больших прямых токах, но за счёт большой барьерной ёмкости они будут низкочастотными.

Точечные диоды.


Рисунок 3

К базе точечного диода подводят вольфрамовую проволоку, легированную атомами акцепторной примеси, и через неё пропускают импульсы тока силой до 1А. В точке разогрева атомы акцепторной примеси переходят в базу, образуя p-область (рис. 4).

Рисунок 4

Получается p-n переход очень малой площади. За счёт этого точечные диоды будут высокочастотными, но могут работать лишь на малых прямых токах (десятки миллиампер).

Микросплавные диоды.

Их получают путём сплавления микрокристаллов полупроводников p- и n- типа проводимости. По своему характеру микросплавные диоды будут плоскостные, а по своим параметрам – точечные.


5. Вольтамперная характеристика и основные параметры полупроводниковых диодов

К-во Просмотров: 589
Бесплатно скачать Курсовая работа: Расчет измерительных преобразователей. Полупроводниковый диод