Курсовая работа: Расчет кривошипного механизма

170

19

57

6

183

20

60

Введём масштабный коэффициентграфиков.

mS=0.109(м/мм); (4.2)

mS= (4.3)

(4.4)

где: Н1,Н2-полюсные расстояния, мм;

Н1=70

Н2=80(мм).

Из 4.3 получаем:

.

Из 4.4 будем иметь:

.


4.2.2 Задачей динамического синтеза является определение такого минимального радиуса-вектора Rmin профиля кулачка и такого расстояния d между центрами вращения кулачка и толкателя при наличии которых переменный угол передачи движения ни в одном положении кулачкового механизма не будет меньше gmin

Графическое построение для определения минимального радиуса кулачка будем проводить в масштабе mS. Чтобы определить минимальный радиус кулачка нам нужно построить графики зависимости S-dS/dj. Для этого выберем масштабный коэффициент mS=0,333.

Для определения S и dS/dj воспользуемся формулами:

(4.5)

где: S2,S1-расстояния на диаграмме S-dS/dj и S-j соответственно, мм.

(ds/dj)2,(ds/dj)1 – значение скорости на диаграмме S-ds/dj и ds/dj -j, соответственно.

Точка В - центр вращения толкателя. Дуга радиуса lявляется ходом толкателя h= l Sмах. Эта дуга размечена в соответствии с осью ординат диаграммы y-S.

Полученные значения заносим в таблицу- 10

Таблица 10.

отрезок

hdy/dj, мм

К-во Просмотров: 680
Бесплатно скачать Курсовая работа: Расчет кривошипного механизма