Курсовая работа: Расчёт многокорпусной выпарной установки
(7)
где dВН – внутренний диаметр труб, м; Н – принятая высота труб, м.
Таким образом, перегрев раствора в j-м аппарате Δtпер j равен:
(8)
где IВП – энтальпия вторичного греющего пара, кДж/кг; сВ , сН – теплоемкости соответственно воды и конденсата греющего пара, кДж/(кг×К); tК – температура конденсата греющего пара, К; М – масса конденсата, кг.
Полезная разность температур в каждом корпусе может быть рассчитана по уравнению:
(9)
Анализ этого уравнения показывает, что величина Δtпер /2 представляет собой дополнительную температурную потерю. В связи с этим общую полезную разность температур выпарных установок с аппаратами с вынесенной зоной кипения нужно определять по следующему выражению:
(10)
1.3 Расчёт полезной разности температур
Общая полезная разность температур равна:
(11)
Полезные разности температур по корпусам (в °С) равны:
Тогда общая полезная разность температур равна:
°С
Проверим общую полезную разность температур:
°С
1.4 Определение тепловых нагрузок
Расход греющего пара в первый корпус, производительность каждого корпуса по выпаренной воде и тепловые нагрузки по корпусам определим путём совместного решения уравнений тепловых балансов по корпусам и уравнения баланса по воде для всей установки:
(12)
(13)
(14)
(15)
где 1,03 – коэффициент, учитывающий 3 % потерь в окружающую среду; сН , с1 , с2 – теплоёмкости растворов соответственно исходного (начальной концентрации), в первом и во втором корпусе, кДж/(кг∙К); Q1конц , Q2конц , Q3конц – теплота концентрирования по корпусам, кВт; tН – температура кипения исходного раствора в первом корпусе, °С:
где - температурная депрессия для исходного раствора. При решении уравнений (12) – (15) можно принять Iвп1 ≈ Iг2 ; Iвп2 ≈ Iг3 ; Iвп3 ≈ Iбк .