Курсовая работа: Расчёт многокорпусной выпарной установки

Выберем конструкционный материал, стойкий в среде кипящего раствора Na2 SO4 в интервале изменения концентраций от 6 до 30 % [5]. В этих условиях химически стойкой является сталь марки Х17. Скорость коррозии её менее 0,1 мм/год, коэффициент теплопроводности λст = 25,1 Вт/(м∙К).


1.6 Расчёт коэффициентов теплопередачи

Коэффициент теплопередачи для первого корпуса К определяют по уравнению аддитивности термических сопротивлений:

(17)

где α1 , α2 – коэффициенты теплоотдачи от конденсирующегося пара кстенке и от кипящего раствора к стенке соответственно, Вт/(м2 ×К); δ – толщина стенки, м; λ – коэффициент теплопроводности, Вт/(м×К).

Примем, что суммарное термическое сопротивление равно термическому сопротивлению стенки δстст и накипи δнн . Термическое сопротивление загрязнений со стороны пара не учитываем. Получим:

2 ∙К)/Вт

Коэффициент теплопередачи от конденсирующегося пара к стенке α1 равен:

(18)

где r1 – теплота конденсации греющего пара, Дж/кг; ρж1 , λж1 , μж1 – соответственно плотность (кг/м3 ), теплопроводность [Вт/(м∙К)], вязкость (Па∙с) конденсата при средней температуре плёнки tпл = tг1 – Δt1 /2, где Δt1 – разность температур конденсации пара и стенки, град.

Физические свойства конденсата Na2 SO4 при средней температуре плёнки сведём в таблицу 2.

Теплопроводность была рассчитана по формуле [7]:


(19)

где М – молекулярная масса Na2 SO4 , равная 142 г/моль; ср – удельная теплоёмкость, Дж/(кг∙К).

Таблица 2Физические свойства конденсата при средней температуре плёнки

Параметр Корпус
1 2 3
Теплота конденсации греющего пара r, кДж/кг 2137,5 2173 2224,4
Плотность конденсата при средней температуре плёнки ρж , кг/м3 924 935 950
Теплопроводность конденсата при средней температуре плёнки λж , Вт/(м∙К) 0,685 0,686 0,685
Вязкость конденсата при средней температуре плёнки μж , Па∙с 0,193 ∙ 10-3 0,212 ∙ 10-3 0,253 ∙ 10-3

Расчёт α1 ведут методом последовательных приближений. В первом приближении примем Δt1 = 2,0 град. Тогда:

Вт/(м2 ∙К)

Для установившегося процесса передачи тепла справедливо уравнение:

где q – удельная тепловая нагрузка, Вт/м2 ; Δtст – перепад температур на стенке, град; Δt2 – разность между температурой стенки со стороны раствора и температурой кипения раствора, град.

Распределение температур в процессе теплопередачи от пара через стенку к кипящему раствору показано на рисунке 2.


Рис. 1. Распределение температур в процессе теплопередачи от пара к кипящему раствору через многослойную стенку: 1 – пар; 2 – конденсат; 3 – стенка; 4 – накипь; 5 – кипящий раствор.

град

Тогда:

град

Коэффициент теплопередачи от стенки к кипящему раствору для пузырькового кипения в вертикальных кипятильных трубах при условии естественной циркуляции раствора [6] равен:

(20)

где ρж , ρП , ρ0 – соответственно плотность жидкости, пара и пара при абсолютном давлении р = 1 ат., кг/м3 ; σ – поверхностное натяжение, Н/м; μ – вязкость раствора, Па∙с.

К-во Просмотров: 666
Бесплатно скачать Курсовая работа: Расчёт многокорпусной выпарной установки