Курсовая работа: Расчёт оптимальной загрузки трансформаторов
3. Непрерывные обмотки (рис. 3в) состоят из отдельных секций, намотанных по спирали и соединенных между собой без пайки. Непрерывные обмотки получили наибольшее применение, что объясняется их большой механической прочностью и надежностью.
В трансформаторах с масляным охлаждением магнитопровод с обмотками помещен в бак, наполненный трансформаторным маслом (рис.4). Трансформаторное масло, омывая обмотки 2 и 3 и магнитопровод 1, отбирает от них теплоту и, обладая высокой теплопроводностью, через стенки бака 4 и трубы радиатора 5 отдает ее в окружающую среду. Наличие трансформаторного масла обеспечивает более надежную работу высоковольтных трансформаторов, так как электрическая прочность масла намного выше, чем воздуха. Масляное охлаждение интенсивнее воздушного, поэтому габариты и вес масляных трансформаторов меньше, чем у сухих трансформаторов такой же мощности.
Для компенсации объема масла при изменении температуры, а также для защиты масла от окисления и увлажнения при контакте с воздухом применяют расширитель 9,представляющий собой цилиндрический сосуд, установленный на крышке бака и сообщающийся с ним. Колебания уровня масла с изменением его температуры происходят не в баке, который всегда заполнен маслом, а в расширителе, сообщающемся с атмосферой.
Обмотки трансформатора с внешней цепью соединяют вводами 7 и 8. В масляных трансформаторах для вводов обычно используют проходные фарфоровые изоляторы. Такой ввод снабжен металлическим фланцем, посредством которого он крепится к крышке бака. К дну бака прикреплена тележка, позволяющая перемещать трансформатор в пределах подстанции. На крышке бака расположена рукоятка переключателя 6, с помощью которого можно изменять коэффициент трансформации. Это бывает необходимо делать для регулирования напряжения в электрической сети.
Потери и КПД трансформатора. В процессе трансформирования электрической энергии часть ее теряется в трансформаторе. Потери в трансформаторе разделяются на электрические и магнитные.
Электрические (нагрузочные) потери обусловлены нагревом обмоток трансформаторов при прохождении по ним электрического тока. Мощность электрических потерь пропорциональна квадрату тока и определяется суммой потерь в первичной и вторичной обмотках.
Нагрузочные потери определяются по выражению:
,
где - паспортный параметр трансформатора, называемый потерями короткого замыкания; S-мощность, передаваемая через трансформатор; - номинальная мощность трансформатора.
Электрические потери называют переменными, так как их величина зависит от нагрузки S трансформатора.
Магнитные потери возникают в магнитопроводе трансформатора. Их причина - систематическое перемагничивание магнитопровода переменным магнитным полем. Перемагничивание вызывает два вида магнитных потерь: потери от гистерезиса, связанные с затратой энергии на уничтожение остаточного магнетизма в ферромагнитном материале магнитопровода, и потери от вихревых токов, наводимых переменным магнитным полем в пластинах магнитопровода.
С целью уменьшения магнитных потерь магнитопровод трансформатора выполняют из магнитно-мягкого ферромагнитного материала — тонколистовой электротехнической стали. При этом магнитопровод делают шихтованным в виде пакетов из тонких пластин, изолированных с двух сторон тонкой пленкой лака.
При неизменном первичном напряжении магнитные потери, называемые иначе потерями холостого хода постоянны, т. е. не зависят от нагрузки трансформатора.
Суммарные потери в трансформаторе определяются по формуле:
. (3)
Коэффициент полезного действия трансформатора определяется как отношение активной мощности вторичной обмотки (полезная мощность) к активной мощности первичной обмотки (подводимая мощность):
,
где - определяется по формуле (3).
Активную мощность вторичной обмотки можно найти по выражению:
,
где -линейные значения напряжения и тока; - коэффициент мощности; -мощность вторичной обмотки.
Учитывая, что , можно получить выражение для расчета КПД трансформатора:
. (4)
Анализ формулы (4) показывает, что КПД трансформатора зависит от коэффициента его загрузки и от характера () нагрузки. Эти зависимости иллюстрируются графиками, приведенными на рис.6.
Экономия электроэнергии в трансформаторах. На подстанциях могут устанавливаться несколько трансформаторов, работающих параллельно. В этом случае суммарные потери в них определяются по формуле:
, (5)
где n –число параллельно работающих трансформаторов.
Экономия электроэнергии за счет снижения потерь может быть достигнута параллельным включением трансформаторов при увеличении нагрузки. На рис.7 показаны зависимости потерь активной мощности в одном и двух параллельно работающих трансформаторах от их нагрузки S. Так как потери мощности в одном трансформаторе согласно (5) равны
, (6)