Курсовая работа: Расчет стационарного теплового поля в двумерной пластине
Триангуляция.
Результат триангуляции представлен на рис.3.
Рис. 3
Все выбранные узлы заносятся в список, который содержит информацию о координатах узлов. Номер узла определяется его номером в списке. Кроме списка вершин будем вести еще список треугольников. В глобальном списке треугольников будет храниться информация о каждом построенном треугольнике: номера (Top1, Top2, Top3 ) трех узлов, составляющих данный элемент и номер границы. Номер треугольника определяется его номером в списке. Договоримся, что у каждого треугольника границе может принадлежать только одна сторона и если такая сторона есть, то вершины, которые она соединяет, будут стоять на первых двух позициях (Top1 и Top2 ). Обход треугольника совершается против часовой стрелки.
Метод конечных элементов
Выберем произвольный треугольник (с номером e ). Обозначим его вершины и . Каждому узлу треугольника поставим в соответствие функцию формы
, (5)
где , A – площадь треугольника. Тогда температуру в пределах треугольника можно определить с помощью функций форм и значений температуры в узловых точках
. (6)
Функционал (4) можно представить в виде суммы функционалов , каждый из которых отражает вклад в функционал (4) элемента с номером e
. (7)
Минимум функционала (4) находим из условия
(8)
Функционал можно представить в виде
(9)
Здесь , глобальный вектор температур , - матрица градиентов, которая для функций формы (5) примет вид , . Локальный вектор температур . Здесь матрица геометрических связей имеет размерность . Элементы этой матрицы определяются следующим образом: ; все остальные элементы равны нулю.
Продифференцируем функционал (9):
Из выражения (8) с учетом последнего соотношения получаем , где матрица теплопроводности элемента ; вектор нагрузки элемента .
В силу особенностей проведенной триангуляции можно выделить три группы конечных элементов. В первую входят треугольники, у которых сторона i – j принадлежит одной из внешних границ. Во вторую – те, у которых та же сторона принадлежит одной из внутренних границ. И, наконец, третью группу составляют элементы, стороны которых лежат внутри рассматриваемой области.
В зависимости от того, к какой группе принадлежит конечный элемент с номером e , матрица и вектор будут определяться несколько различным образом.
Обозначим
.
Поверхностные интегралы можно посчитать с помощью относительных координат . Отрезки, соединяющие любую фиксированную точку P треугольника e c его вершинами, разбивают этот элемент на три треугольные части площадью . Координаты определяются из соотношений .
Используя относительные координаты, можно получить следующие соотношения:
Если конечный элемент с номером e принадлежит к первой группе, то . Если ко второй, то . Наконец, если элемент принадлежит к третьей группе, то .