Курсовая работа: Расчетные схемы механической части электропривода

Если рабочий орган движется поступательно, уравнение баланса мощностей при прямом направлении потока энергии, принимая DМ=0, можно записать так:



Откуда


Соответственно для обратного направления потока механической энергии

Необходимо иметь в виду, что КПД передач зависит от нагрузки, а для червячного зацепления - и от направления передачи энергии, поэтому при расчетах для правильного определения Мс следует использовать соответствующие зависимости hмех от полезной нагрузки передач.

2. Уравнения движения электропривода

Механическая часть электропривода представляет собой систему твердых тел, на движение которых наложены ограничения, определяемые механическими связями Уравнения механических связей устанавливают соотношения между перемещениями в системе, а в тех случаях, когда задаются соотношения между скоростями ее элементов, соответствующие уравнения связей обычно интегрируются В механике такие связи называются голономными В системах с голономными связями число независимых переменных - обобщенных координат, определяющих положение системы, - равно числу степеней свободы системы Известно, что наиболее общей формой записи дифференциальных уравнений движения таких систем являются уравнения движения в обобщенных координатах (уравнения Лагранжа)


где WK - запас кинетической энергии системы, выраженный через обобщенные координаты qi и обобщенные скорости i ; Qi =dAi /dqi - обобщенная сила, определяемая суммой элементарных работ dА1 всех действующих сил на возможном перемещении dqi , или


где L - функция Лагранжа, Q'i - обобщенная сила, определяемая суммой элементарных работ dA, всех внешних сил на возможном перемещении dqi . Функция Лагранжа представляет собой разность кинетической WK и потенциальной Wп энергий системы, выраженных через обобщенные координаты qi и обобщенные скорости i , т е:


Уравнения Лагранжа дают единый и достаточно простой метод математического описания динамических процессов в механической части привода; их число определяется только числом степеней свободы системы.

В качестве обобщенных координат могут быть приняты как различные угловые, так и линейные перемещения в системе Поэтому при математическом описании динамики механической части привода с помощью уравнений Лагранжа предварительного приведения ее элементов к одной скорости не требуется. Однако, как было отмечено, до выполнения операции приведения в большинстве случаев невозможно количественно сопоставлять между собой различные массы системы и жесткости связей между ними, следовательно, невозможно выделить главные массы и главные упругие связи, определяющие минимальное число степеней свободы системы, подлежащее учету при проектировании. Поэтому составление приведенных расчетных механических схем и их возможное упрощение являются первым важным этапом расчета сложных электромеханических систем электропривода независимо от способа получения их математического описания.

Получим уравнения движения, соответствующие обобщенным расчетным механическим схемам электропривода, представленным на рис.1.2. В трехмассовой упругой системе обобщенными координатами являются угловые перемещения масс f1 , f2 , f3 , им соответствуют обобщенные скорости w1 , w2 и w3 . Функция Лагранжа имеет вид:


Для определения обобщенной силы Q'1 необходимо вычислить элементарную работу всех приложенных к первой массе моментов на возможном перемещении


Следовательно,


Аналогично определяются две другие обобщенные силы:

Подставляя (1.34) в (1.32) и учитывая (1.35) и (1.36), получаем


следующую систему уравнений движения:


? (1.37) ???????????????? ??????????? ??????? ?????? ???????

являются моментами упругого взаимодействия между движущимися массами системы:

С учетом (1.38) систему уравнений движения можно представить в виде

Рассматривая (1.39), можно установить, что уравнения движения приведенных масс электропривода однотипны. Они отражают физический закон (второй закон Ньютона), в соответствии с которым ускорение твердого тела пропорционально сумме всех приложенных к нему моментов (или сил), включая моменты и силы, обусловленные упругим взаимодействием с другими твердыми телами системы.

Очевидно, повторять вывод уравнений движения вновь, переходя к рассмотрению двухмассовой упругой системы, нет необходимости. Движение двухмассовой системы описывается системой (1.39) при J3 =0 и М23 =0



Переход от двухмассовой упругой системы к эквивалентному жесткому приведенному механическому звену для большей наглядности его физической сути полезно выполнить в два этапа. Вначале положим механическую связь между первой и второй массами (см. рис.1.2,б) абсолютно жесткой (с12 =¥). Получим двухмассовую жесткую систему, расчетная схема которой показана на рис.1.9. Отличием ее от схемы на рис.1.2,б является равенство скоростей масс w1 =w2 =wi , при этом в соответствии со вторым уравнением системы (1.40)

Уравнение (1.41) характеризует нагрузку жесткой механической связи при работе электропривода. Подставив это выражение в первое уравнение системы (1.40), получим


К-во Просмотров: 401
Бесплатно скачать Курсовая работа: Расчетные схемы механической части электропривода