Курсовая работа: Разработка динамических моделей для транспортно-производственной системы
Такойметод применим лишь для условий так называемых «закрытых» задач, т.е. когда мощности поставщиков и потребителей сбалансированы. В случае несбалансированности мощностей поставщиков и потребностей потребителей задача приводится к «закрытой» при помощи добавления дополнительного поставщика или потребителя и переноса ему излишков или недостатков продукции [4].
2.3 «Числовая» модель задачи.
В рассматриваемой ситуации Ai (количество поставщиков зерна) равно 3, и Bj (количество потребителей - мелькомбинаты) равно 2. Кроме этого зерно поступает от поставщиков к потребителям через посредников (элеваторы), число которых равно 3. В таблице 1 предоставлены данные по суммарные затраты на транспортировку и обработку зерна (в расчете на 1 ц) на каждом из элеваторов. Суммарно из всех пунктов производства можно поставить 100 тыс.ц. зерна, а элеваторы могут переработать 110 тыс. ц, а суммарные потребности мелькомбинатов равны 100 тыс. ц [2].
Таблица 1.
Потребители Поставщики | Мощность элеваторов | Потребность мелькомбинатов | |||
Михайловское | Лебедево | Озерное | Боровое | Мамонтово | |
Заря | 14 | 14 | 15 | 35 | |
Восход | 16 | 11 | 9 | 45 | |
Радуга | 15 | 15 | 12 | 20 | |
Михайлово | 2 | 6 | 20 | ||
Лебедево | 7 | 3 | 55 | ||
Озерное | 4 | 9 | 25 | ||
20 | 55 | 25 | 40 | 60 |
3. Разработка динамических моделей для транспортно-производственной системы.
3.1 О днопродуктовая многоэтапная транспортно-производственная модель.
Возьмем из задачи, описанной выше, только половину условия:
Ai (количество поставщиков зерна) равно 3, и Bj (количество потребителей - элеваторов) равно 3. В таблице 2 предоставлены данные по суммарные затраты на транспортировку и обработку зерна (в расчете на 1 ц) на каждом из элеваторов. Суммарно из всех пунктов производства можно поставить 100 тыс.ц. зерна [2].
Таблица 2
Потребители Поставщики | Михайловское | Лебедево | Озерное |
Мощность поставщиков |
Заря | 14 | 14 | 15 | 35 |
Восход | 16 | 11 | 9 | 45 |
Радуга | 15 | 15 | 12 | 20 |
Резерв | 0 | 0 | 0 | 10 |
Потребности потребителей | 20 | 55 | 25 | 110 |
Задача, записанная выше называется однопродуктовой многоэтапной транспортно-производственной моделью. Для решения данной задачи воспользуемся методом северо-западного угла и занесем полученные данные в таблицу 3.
Таблица 3.
Потребители Поставщики | Михайловское | Лебедево | Озерное |
Мощность поставщиков | |||
Заря | 14 | 20 | 14 | 15 | 15 | 35 | |
Восход | 16 | 11 | 40 | 9 | 5 | 45 | |
Радуга | 15 | 15 | 12 | 20 | 20 | ||
Потребности потребителей | 20 | 55 | 25 | 110 |
Для первоначального плана (табл. 2) суммарные затраты на транспортировку и обработку зерна составляют 1215 у.е.
Нетрудно убедиться, что в нашем случае при использовании тех же направлений другой допустимый план построить нельзя. Изменение объема перевозок в любой из занятых клеток немедленно приведет к возникновению дисбаланса. Другой допустимый план можно построить, использовав лишь незанятые клетки таблицы. Таких допустимых планов можно построить очень много и каждый из них будет характеризоваться своим значением целей функции. Возникает вопрос о способе целенаправленного построения новых планов с улучшенной целевой функцией. Его решение основано на потенциалах и сформулированном выше признаке оптимальности.
Используя принятые обозначения, запишем следующие соотношения между оценками для клеток, вошедших в план:
v1 - u1 = 14 | v2 – u1 = 14 | v2 - u2 = 11 |
v3 - u2 = 9 | v3 - u3 = 12 | v3 - u4 = 0 |
Число неизвестных в данной системе уравнений на единицу больше числа уравнений, поэтому решение может быть получено лишь с точностью до постоянного слагаемого. Приравняв значение одной из переменных какому-либо числу, однозначно находим значения других переменных.