Курсовая работа: Разработка факультатива "Оптимальный портфель ценных бумаг"
- На первый взгляд логика в ответе девушки есть. А мы подойдем к вопросу с научной точки зрения и найдем вероятность опытным путем. Проведем 1000 опытов, т.е. 1000 раз выйдем на улицу и посчитаем сколько раз встретим динозавра. Потом это число разделим на 1000 и, скорее всего, получим ноль. А бедная девушка будет встречать динозавра каждый второй свой поход на улицу.
Задача 2. С какой вероятностью из колоды можно вытянуть туз пик с первого раза? Колода 54 карты.
()
В этом примере событие вытягивания любой одной карты равновероятно событию вытягивания любой другой карты. Т.к. карт 54, то вероятности равны Т.е. события равновероятны, если вероятности того, что они произойдут равны.
Задача 3. Ребенок играет с десятью буквами разрезной азбуки "М,М,А,А,А,Т,Т,Е,И,К". Найти вероятность того, что раскладывая буквы, он получит слово "математика".
Необходимо показать как происходит выбор букв. Всего 10 букв, из них две буквы М. Нам не важно какую из них выбрать, значит вероятность, того что первой будет стоять буква М . Вытаскивание буквы - это простое событие, а нам нужно найти сложное - получени слова. Для этого нам нужно, чтобы выполнились все события одновременно, т.е. их произведение.
()
Задача 4. Игральная кость подбрасывается три раза. - количество выпаданий четного числа. Какие значения принимает и с какой вероятностью?
18383818
Вызвать ученика к доске. Сколько раз может выпадать четное число очков? От нуля до трех. Нарисуем таблицу. Сколько граней на кубике с четным числом очков? Три. А сколько всего граней? Шесть. Значит с какой вероятностью при одном броске выпадет четное число? Отношение количества четных граней к общему количеству граней. Найдем с какой вероятностью ни разу не выпадет четного числа очков. А если выпадет один раз четное количество очков? Это может произоти следующим образом: при первом подбрасывании - четное, втором и третем - не четное; при втором - четное, при первом и третем - нечетное; при первом и втором - нечетное, при третем - четное. Найдем эти три вероятности и сложим их, получим вероятность того, что четное число очков выпало один раз. Очевидно, что - выпадает случайно. Будем называть ее величиной, а полученную таблицу распределения.
Заметим, что . Это понятно, т.к. все сумма всех событий составляет полную вероятность, а она равна 1.
Задача 5. Игральная кость бросается шесть раз. Найти вероятность того, что
а) единица выпала 1 раз;
б) тройка выпала два раза.
Рассказать для примера а). Всего у нас шесть опытов - выбрасываний кубика. Из них единица выпадает один раз, а пять раз выпадают остальные пять цифр. Единица может выпасть первой, второй, третей, четвертой, пятой, шестой. Необходимо это учесть. Делаем аналогично задаче 4.
Для примера б). У нас тройка выпадает 2 раза. Первой и второй, первой и третей, и т.д., пятой и шестой. Сколько этих пар? 15. а)
б)
Комментарий. Для эффективной работы необходимо заинтересовать учащихся, создать диалог. Можно поинтересоваться какие предметы экономического цикла они изучают, поговорить о них, рассказать какие экономические дисциплины изучают в ВУЗах. Заметить, что вся практическая экономика связана с математикой.
Во время решения задач все действия необоходимо проговаривать. Если решение остается непонятым - повторить его.
При правильном подходе материал первого урока не вызывает сложностей у учащихся.]
1.1.3 Домашнее задание
Задача решается аналогично третей.