Курсовая работа: Разработка имитационной модели транспортной сети

разработка и реализация алгоритма имитационной модели;

решение тестовых задач с помощью имитационной.

В первой главе представлены: теоретический материал для разработки имитационной модели железнодорожной сети, ее актуальность, алгоритм Форда-Фалкерсона, метод Монте-Карло.

Во второй главе представлены формализация имитационной модель, описание водных и выходных значений, блок-схема алгоритма, тестирование модели и в приложении листинг программы.

1. Имитационное моделирование для рациональной организации транспортных потоков

1.1 Актуальность использования имитационной модели для исследования потоков в железнодорожной сети

В наше время за счёт резкого увеличения числа транспортных средств в сетях дорог существенно возросли требования к рациональной организации транспортных потоков. Сама сеть дорог может быть представлена в виде графа, состоящего из узлов и дуг. Каждое ребро графа, соответствующее участку дороги, характеризуется длиной, пропускной способностью и стоимостью проезда по нему единицы транспортного средства. На пропускную способность ветви графа влияет скорость передвижения единицы транспорта, которая в свою очередь зависит от многих факторов, среди которых наиболее важными являются загруженность участков пути, состояние дорожного покрытия, условия внешней среды. Загруженность на различных участках дороги бывает различной и зависит от наличия внутренних транспортных потоков на данном участке, которые могут рассматриваться как помехи при передвижении транспортной единицы из начального пункта сети в конечный пункт. Состояние дороги определяется её изношенностью, условиями эксплуатации, влиянием погодных условий. Параметры внешней среды изменяются в зависимости от времени года, времени суток и подвержены влиянию погодных воздействий. Значения факторов, определяющих рациональную организацию транспортных потоков в сети, изменяются во времени. Наличие внутренних транспортных потоков на каждом участке сети носит вероятностный характер. Отдельные участки транспортной сети изменяют своё состояние (изнашиваются) с разной интенсивностью. Параметры внешней среды периодически изменяются. При управлении следует учитывать, что в реальной транспортной сети перечисленные факторы являются взаимосвязанными.

При управлении потоками в транспортной сети, как правило, находят оптимальное распределение транспортного потока по ветвям сети, оценивают максимальный поток в сети и находят кратчайший путь между заданными входом и выходом, выявляют узкие места в сети с целью их своевременной ликвидации. Одновременно с этими задачами оценивают суммарные затраты транспортных средств при их движении из начального пункта в конечный.

Наличие случайных факторов, влияющих на состояние транспортной сети, не позволяет решать перечисленные задачи с использованием известного аппарата, основанного на аналитических моделях, называемых графовыми моделями. Особенно большие трудности у исследователей вызывает определение узких мест в сети при наличии транспортных потоков относящихся к различным направлениям и вероятностных внутренних потоков на отдельных участках сети, которые могут приводить к увеличению числа аварий и возникновению “пробок".

Исходя из выше изложенного, в качестве выхода из положения исследователи вынуждены прибегать к имитационному моделированию транспортных потоков в сети дорог с учетом случайных факторов.

1.2 Описание модели железнодорожной сети

Структуру транспортных потоков в железнодорожной сети можно представить в виде графа Gh, где h-вариант организации транспортных потоков в железнодорожной сети. Перевозки в сети реализуются в соответствии со следующими параметрами, определяемыми матрицами:

; ; ; , (1. 1)

где cij - пропускные способности ветвей графа Gh , соединяющих узел i с узлом j ; lij - расстояния между узлами i и j; - начальный поток по ветви ij ; qij - стоимость единицы пути движения транспортного средства по ветви ij . Определёно множество входов в сеть , и множество выходов из сети , в одном направлении. В сети кроме транзитных потоков существуют внутренние транспортные потоки на отдельных отрезках дороги в одну и другую сторону, которые снижают пропускные способности ветвей графа Gh . Величины внутренних транспортных потоков для ij -ых участков определяются функциями распределения . Пропускные способности ветвей ij графа Gh с учётом внутренних потоков изменяются и представляют собой случайные величины, определяемые с помощью функций распределения .

В каждом узле железнодорожной сети происходят процессы формирования-расформирования составов. Длительность этих процессов, как правило, носит вероятностный характер и описывается функциями распределения. Функции распределения для каждого i -ого узла сети задаются матрицей , где каждый элемент матрицы есть функция распределения времени на формирование-расформирование в i -ом узле для состава, пришедшего с узла k и следующего в узел j . Матрица имеет вид:

где w - общее количество входящих-исходящих дуг для узла i. Время на формирование-расформирование составов местного назначения принимается равным нулю.

Максимальный поток между узлами распределяется по ветвям сети, где k -номер итерации алгоритма Форда-Фалкерсона при определении максимального значения потока. Показатель затрат движения транспортных средств вдоль ветви ij графа Gh может быть задан одной из функций:

, (1.2)

где весовые коэффициенты важности соответственно расстояния (), времени (), стоимости () движения по ветвям сети. Величина есть среднее значение времени, затраченное транзитными составами на формирование-расформирование в i-ом узле. Оно определяется по формуле:

, (1.3)

где - значение времени на формирование-расформирование, полученное по функции распределения . Поскольку при движении транспортных средств по сети Gh необходимо стремиться к минимизации этих затрат, то в качестве показателя “выгоды" максимального потока берётся общая характеристика затрат, которая вычисляется по матрице распределений максимального потока по всем ветвям ij графа Gh :

(1.4)

Таким образом, формула (1.4) определяет величину затрат при перемещении транспортного средства в сети Gh в условиях максимального потока. С одной стороны поток необходимо максимизировать, а с другой стороны показатель “выгоды" должен быть минимальным.

Наличие внутренних транспортных потоков в Gh обусловливает вероятностный характер пропускных способностей на многих ветвях графа Gh . Недетерминированное время формирования и расформирования составов влияет случайным образом на время передвижения транзитных составов из пункта отправления в пункт назначения по пути, содержащим этот узел. Указанные особенности не позволяют использовать для поиска максимального потока в сети алгоритм Форда-Фалкерсона. Поэтому актуально использование имитационной модели, основанной на сочетании процедуры Монте-Карло и теоремы Форда-Фалкерсона. Таким образом, ставятся задачи определения с помощью имитационной модели максимального потока в заданном направлении между множеством узлов входов в сеть и множеством узлов выходов, а так же поиска узких мест в сети Gh при перемещении транспорта в заданном направлении, устранение которых позволит достичь оптимальной организации потоков в сети. При поиске интегрального максимального потока в сети необходимо выполнение следующих условий: для каждого сочетания входа и выхода имеется максимальный поток, интегральная функция затрат имеет минимальное значение.

1.3 Алгоритм Форда-Фалкерсона для нахождения максимального потока в сети

Алгоритм решения задач нахождения максимального потока в железнодорожной сети основан на теореме Форда-Фалкерсона: в любой транспортной сети максимальный поток равен минимальной пропускной способности. Если поток максимален, то найдется такое сечение, пропускная способность которого равна мощности потока. Доказывается эта теорема применением алгоритма Форд-Фалкерсона. Согласно этому алгоритму, начиная с некоторого начального неполного потока, по итеративному алгоритму можно получить полный поток, если прибавлять к различным значениям потоков пути минимальное из чисел , которые вычислены по этому пути. После такой операции путь уже будет содержать хотя бы одну ненасыщенную дугу. Если таким же образом поступить с другими путями , то, в конце концов, получим полный поток. Поэтому алгоритм определения максимального потока состоит из следующих шагов:

Строим начальный поток ;

проверяем, попал ли узел в множество узлов , которые достижимы по ненасыщенным ребрам из . Если узел не попал, то считают, что построенный поток максимален, и алгоритм расчета останавливается;

если узел попал во множество , то выделяют путь , состоящий из ненасыщенных ребер и ведущий грузы из в ;

К-во Просмотров: 642
Бесплатно скачать Курсовая работа: Разработка имитационной модели транспортной сети