Курсовая работа: Разработка имитационной модели
Содержание
1. Введение
2. Постановка задачи
3. Описание метода решения
4. Разработка модели
4.1 Логико-математическое описание моделируемой системы
4.2 Формализованная схема объекта моделирования
4.3 Временная диаграмма
4.4 Блок-схемы программных блоков и основной программы
5. Перевод алгоритма на язык программирования
6. Верификация: установление правильности машинной программы
7. Результаты эксперимента
8. Анализ результатов
9. Заключение
10. Список использованной литературы
1. Введение
Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или иные решения. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки, в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее текущее решение принимается уже с учетом реальной новой обстановки и т. д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучиваться принимать правильные решения – если не оптимальные, то почти оптимальные.
В исследовании операций широко применяются как аналитические, так и статистические модели. Каждый из этих типов имеет свои преимущества и недостатки. Аналитические модели более грубы, учитывают меньшее число факторов, всегда требуют каких-то допущений и упрощений. Зато результаты расчета по ним легче обозримы, отчетливее отражают присущие явлению основные закономерности. А, главное, аналитические модели больше приспособлены для поиска оптимальных решений. Статистические модели, по сравнению, с аналитическими, более точны и подробны, не требуют столь грубых допущений, позволяют учесть большое (в теории – неограниченно большое) число факторов. Но и у них – свои недостатки: громоздкость, плохая обозримость, большой расход машинного времени, а главное, крайняя трудность поиска оптимальных решений, которые приходятся искать «на ощупь», путем догадок и проб.
Наилучшие работы в области исследования операций основаны на совместном применении аналитических и статистических моделей. Аналитическая модель дает возможность в общих чертах разобраться в явлении, наметить как бы контур основных закономерностей. Любые уточнения могут быть получены с помощью статистических моделей.
Имитационное моделирование основано на прямом описании моделируемого объекта. Существенной характеристикой таких моделей является структурное подобие объекта и модели. Это значит, каждому существенному с точки зрения решаемой задачи элементу объекта ставится в соответствие элемент модели. При построении имитационной модели описываются законы функционирования каждого элемента объекта и связи между ними. Работа с имитационной моделью заключается в проведении имитационного эксперимента. Процесс, протекающий в модели в ходе эксперимента, подобен процессу в реальном объекте. Поэтому исследование объекта на его имитационной модели сводится к изучению характеристик процесса, протекающего в ходе эксперимента.
Для формального представления информационной системы при имитационном моделировании обычно используется схема с дискретными событиями. При этом процесс функционирования системы во времени отождествляется с последовательностью событий, возникающих в системе в соответствии с закономерностями ее функционирования. И формальное понятие «событие» вкладывается конкретное смысловое содержание, определяемое целями моделирования. Ценным качеством имитации является возможность управлять масштабом времени. Динамический процесс в имитационной модели протекает в так называемом системном времени. Системное время имитирует реальное время. При этом пересчет системного времени в модели можно выполнять двумя способами. Первый заключается в «движении» по времени с некоторым постоянным шагом Δt, второй - в «движении» по времени от события к событию. Считается, что в промежутках времени между событиями в модели изменении не происходит. Кроме реального и системного времени существует ещё один тип времени - машинное, т.е. время, за которое реализуется имитационный эксперимент.
Цель курсовой работы по дисциплине «Имитационное моделирование экономических процессов» состоит в ознакомлении с современными концепциями построения моделирующих систем, с основными приемами имитационного моделирования, встраиваемыми в общую процедуру преобразования информации от структурирования и формализации составляющих предметных областей до интерпретации обработанных данных и приобретенных знаний, связанных с описанием экономических процессов.
2. Постановка задачи
Фирма имеет в городе 1 точку розничной продажи. Спрос на товары (в единицах товара) в этих точках имеет пуассоновское распределение с математическим ожиданием 10 единиц в день. Торговая точка обслуживаются оптовым магазином. На передачу запроса торговой точки в магазин требуется 1 день. Товары по запросу поступают из оптового магазина в торговую точку в среднем через 5 дней после получения запроса. Эта величина имеет логнормальное распределение с дисперсией 1. Оптовый магазин каждые 14 дней размещает заказы на фабрике. Время, в течение которого магазин получает груз с фабрики, распределено нормально с ожиданием 90 дней, среднеквадратичным отклонением 10 дней; однако заказ при этом никогда не выполняется ранее 60 дней и позднее 120 дней. Проимитировать работу описанной системы с целью определения изменения уровня запаса при данной стратегииуправления розничной торговой точкой и оптовым магазином.
Задать следующие начальные условия моделирования: первый запрос поступает в нулевой момент времени; текущий запас товара в каждой торговой точке составляет 70 единиц, нормативный запас также 70 единиц; запас в магазине составляет 1920 единиц; с фабрики отправлены три груза, в каждом из которых находится по 1800 единиц товара, причем первый груз поступит в магазин на 30-й день, второй - на 60-й, а третий - на 90-й день.
3. Описание метода решения
В нашей курсовой работе мы использовали метод имитационного моделирования. Его основные достоинства :
1. Имитационная модель позволяет описать моделируемый процесс с большой адекватностью, чем другие.
2. Имитационная модель обладает гибкостью варьирования, структуры алгоритмов и параметров системы.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--