Курсовая работа: Разработка имитационной модели

Названные выше этапы имитационного исследования редко выполняются в строго заданной последовательности, начиная с определения проблемы и кончая документированием. В ходе имитационною исследования могут быть сбои в прогонах модели, ошибочные допущения, от которых в дальнейшем приходится отказываться, пере формулировки целей исследования, повторные оценки и перестройки модели. Такой итеративный процесс позволяет разработать имитационную модель, которая дает верную оценку альтернатив и облегчает процесс принятия решения.


4. Разработка модели

В данной курсовой работе применяются следующие распределения: равномерное, нормальное, логнормальное, пуассоновское распределение. Время ответа на запрос точки магазином имеет логнормальное распределение. Спрос на товары в точке за день имеет пуассоновское распределение. Время ответа на запрос магазина фабрикой распределено нормально, а для нахождения одного нормального числа нужно найти 12 равномерно распределенных чисел.

4.1 Логико-математическое описание моделируемой системы

Нормальное распределение

Функция плотности вероятности нормального закона имеет вид:

- параметры нормального закона, (- среднее значение, - дисперсия нормального распределения).

Генератор нормально распределенной случайной величины X можно получить по формулам:

где Tj (j=1,…,12) – значения независимых случайных величин, равномерно распределенных на интервале (0,1).

Равномерное распределение

Функция плотности вероятности равномерного распределения задает одинаковую вероятность для всех значений, лежащих между минимальным и максимальным значениями переменной. Другими словами, вероятность того, что значение попадает в указанный интервал, пропорциональна длине этого интервала. Применение равномерного распределения часто вызвано полным отсутствием информации о случайной величине, кроме ее предельных значений. Равномерное распределение называют также прямоугольным.

при .

Среднее значение распределения равно

,

дисперсия равна

.

Равномерно распределенная случайная величина X на отрезке [a,b] выражается через равномерно распределенную на отрезке [0,1] случайную величину R формулой

.

Логнормальное распределение

Метод получения случайного выборочного значения Y=eX , где X – нормальное распределение случайной величины с дисперсией и средним значением

Распределение Пуассона

Для получения пуассоновски распределенной случайной величины Y можно воспользоваться следующим методом:

,

где Rn – n-е псевдослучайное число.

4.2 Формализованная схема объекта моделирования

обслуженный запрос выполненный заказ

запрос заказ

К-во Просмотров: 852
Бесплатно скачать Курсовая работа: Разработка имитационной модели