Курсовая работа: Разработка привода и системы управления путевой машины
кВт.
Мощность привода поворота транспортера , кВт [2]:
, (12)
где - крутящий момент,
;
- угловая скорость,
.
.
Мощность привода наклона транспортера , кВт [2]:
, (13)
где - сила на штоке гидроцилиндра,
;
- скорость штока,
.
Рисунок 2 – Схема для определения силы на штоке гидроцилиндра
Сумма моментов относительно точки подъема транспортера:
;
Отсюда, .
;
;
.
.
.
4 Разработка принципиальной гидравлической схемы машины
В данной курсовой работе разработана двухпоточная схема гидропривода машины. Эта схема изображена на чертеже ППМ М511.26.00.00.00.ГЗ.
Машина имеет три рабочих органа:
Рабочий орган вращательного действия - РО1 , имеющий привод от гидромотора, рабочий орган поступательного действия - РО2 , приводимый в действие гидроцилиндром, рабочий орган вращательного действия РО3, приводимый гидромотором.
Гидродвигатели приводятся в движение от гидронасосов. Машина имеет два гидронасоса.
В приводе рабочих органов используются распределители:
В приводе РО1 распределитель с закрытым центром, управление электрогидравлическое, в приводе РО2 распределитель предназначенный для гидрозамка, управление электрическое, в приводе РО3 – с закрытым центром, управление электрическое.
Наличие у распределителей сервоуправления значительно облегчает работу машиниста.
Для включения в работу РО1 машинист нажатием на кнопку управления распределителя Р1, подает напряжение на обмотку электромагнита распределителя, распределитель переключается в рабочую позицию и направляет поток жидкости к гидромотору М1. Жидкость идет через элементы : Б-Н1-Р1-М1-Р1-ТС- АТ-Ф-Б
Для остановки рабочего органа РО1 машинист, повторным нажатием на кнопку управления Р1, размыкает электрическую цепь обмотки электромагнита, в этот момент Р1 переключается в нейтральную запирающую позицию, срабатывает клапан первичной защиты КП1, автоматически переводимый в режим переливного. Жидкость от насоса идет через элементы : Б- Н1-КП1-ТС-АТ-Ф-Б.