Курсовая работа: Разработка программного модуля для вычисления интеграла

Содержание

Введение

Постановка задачи

Проектирование программного модуля

Тестирование программного модуля

Заключение

Список использованных источников


Введение

Целью данной курсовой работы является разработка программного модуля для вычисления интеграла по формуле трапеции и Симпсона с заданной точностью , определяя шаг интегрирования по оценке остаточного члена. Для разработки используется табличный процессор Excel и язык программирования Visual Basic for Application.

Данная курсовая работа состоит из 4 разделов.

В разделе «Постановка задачи» описаны: математическая модель задачи, входные и выходные данные, обработка ошибок, которые могут быть допущены при работе с данной программой.

В разделе «Проектирование программного модуля» приведена структурная диаграмма программного модуля, схема программного модуля с ее описанием и описан пользовательский интерфейс.

В разделе «Реализация программного модуля» находится код программы с комментариями к нему и описаны используемые операторы и функции.

В разделе «Тестирование программного модуля» показана работа программы.


1. Постановка задачи

1.1 Математическая модель задачи

Пусть требуется вычислить интеграл , где f(x) - непрерывная функция. Для простоты рассуждений ограничимся случаем, когда f(x)³ 0. Разобьем отрезок [a, b] на n отрезков точками a=x0 <x1 <x2 <...<xk-1 <xk <...<xn =b и с помощью прямых х=хk построим n прямолинейных трапеций (эти трапеции заштрихованы на рис. 1). Сумма площадей трапеций приближенно равна площади криволинейной трапеции, т.е.

Где f(xk-1 ) и f(xk ) - соответственно основания трапеций; xk - xk-1 = (b-a)/n - их высоты.

Таким образом, получена приближенная формула

которая и называется формулой трапеций. Эта формула тем точнее, чем больше n.

Разделим отрезок [a, b] на четное число равных частей n=2m. Площадь криволинейной трапеции соответствующей первым двум отрезкам [x0 x1 ] и [x1 x2 ] и ограниченной заданной кривой y=f(x) заменим площадью криволинейной трапеции которая ограничена параболой второй степени проходящей через три точки M(x0 y0 ) M1 (x1 y1 ) M2 (x2 y2 ) и имеющей ось параллельную оси Oy. Такую криволинейную трапецию будем называть параболической трапецией.

Уравнение параболы с осью параллельной оси Oy имеет вид

Коэффициенты A, Bи C однозначно определяются из условия что парабола проходит через три заданные точки. Аналогичные параболы строим и для других пар отрезков. Сумма площадей параболических трапеций и даст приближенное значение интеграла.

Вычислим сначала площадь одной параболической трапеции.

Лемма: Если криволинейная трапеция ограничена параболой

осью Ох и двумя ординатами расстояние между которыми равно 2h то ее площадь равна

(1)

где y0 и y2 – крайние ординаты а y1 – ордината кривой в середине отрезка.

Доказательство: Расположим вспомогательную систему координат так как показано на рисунке

Коэффициенты в уравнении параболы определяются из следующих уравнений:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 254
Бесплатно скачать Курсовая работа: Разработка программного модуля для вычисления интеграла