Курсовая работа: Разработка программы поиска решения системы дифференциальных уравнений двумя методами: Рунге-Кутта и Рунге-Кутта-Мерсона

Вывести результаты вычислений в том же окне.

Вывести в окне запрос о продолжении вычислений с новыми исходными данными.

Выполнить анализ кода нажатой в ответ на запрос клавиши: при нажатии “Y” повторить ввод снова, при нажатии “N” перейти в окно с меню.

Алгоритм поиска решения системы уравнений методом Рунге-Кутта-Мерсона в подпрограмме процедуре rukutm включает:

Создание окно для ввода исходных данных и вывода результатов вычисления.

Восстановления отображение курсора нормального размера соответствующей подпрограммой - процедурой.

Задание начального шаг-h, начальных значений x о ,y10 ,…,yN 0 и точности вычисления- ε.

Подпрограмме-процедуре задаём вид системы дифференциальных уравнений

В подпрограмме-функции задаём вид правой части уравнений

С помощью пяти циклов с управляющей переменной J=1,N вычисляем коэффициенты по формулам (7)-(11).

В последнем цикле находим решение системы дифференциальных уравнений по формуле (12) и погрешность по формуле (13).

Проверка выполнение условий (14) и (15). Если первое условие не выполняется то h := h /2 и переходим к п.5.

Если выполняются оба условия, то значение xi +1 = xi + h и Yj ( i +1) выводим на экран.

Если второе условие не выполняется, то h := h + h и переходим к п.5.

Вывести результаты вычислений в том же окне.

Вывести в окне запрос о продолжении вычислений с новыми исходными данными.

Выполнить анализ кода нажатой в ответ на запрос клавиши: при нажатии “Y” пoвторить ввод снова , при нажатии “N” перейти в окно с меню.

4. Идентификаторы программы

Для указания соответствия обозначений переменных в формулах математической формулировки и их идентификаторов в программе сведем их в таблицу 1:

Таблица 1

Обозначение параметров

Смысл параметра

В формулах

В программе

Y1… Yn

Y[1]…Y[n]

Начальные приближения

ε

E

Точность результата

К-во Просмотров: 534
Бесплатно скачать Курсовая работа: Разработка программы поиска решения системы дифференциальных уравнений двумя методами: Рунге-Кутта и Рунге-Кутта-Мерсона