Курсовая работа: Реализация и анализ цифрового фильтра с конечной импульсной характеристикой
1. Разработать алгоритм, реализующий заданный тип фильтра в частотной области (с использованием алгоритма БПФ).
2. Составить программу, позволяющую получить:
- спектр входного сигнала;
- спектральную (амплитудно-частотную) характеристику окна;
- отклик фильтра на заданный сигнал;
- спектр выходного сигнала.
3. Проанализировать полученные результаты.
Решение:
Математическая запись сигнала во времени:
Найдем спектр заданного сигнала, для этого воспользуемся прямым преобразованием Фурье:
Затем найдем энергетический спектр сигнала, для этого возведем в квадрат модуль спектра сигнала:
Энергетический спектр сигнала имеет форму колокола, симметричного относительно начала координат, расходящийся по оси частот до бесконечности в обе стороны. Но так как фильтр с бесконечной полосой пропускания реализовать физически невозможно, определим верхнюю частоту с учетом того, что в задании полоса ФНЧ задается по уровню -3 дБ, т.е. по уровню половинной мощности:
Выразив , получаем: .
Дискретный сигнал, соответствующий заданному аналоговому сигналу будет выглядеть следующим образом:
Определим значение произведения , исходя из требования обеспечения уровня неопределённости (или наложения спектров) не хуже –13 дБ. Само же наложение спектров имеет место вследствие дискретизации сигнала (при невыполнении теоремы В.А. Котельникова), которая приводит к периодизации спектра сигнала с частотой .
Исходя из вышесказанного, для определения , сначала, найдём энергию сигнала, распределённую на участке от нуля до половины частоты дискретизации.
Далее, определим энергию, распределённую в диапазоне от половины частоты дискретизации до бесконечности:
Соотношение энергий будет задавать требуемый уровень неопределённости, а именно:
Решив это уравнение, получаем что, произведение = 0,238.
Теперь следует определить число отсчётов N, которое укладывается в периоде повторения Тп при частоте дискретизации равной 1/. Для этого найдем эффективную длительность импульса:
Получаем, что число отсчетов, укладывающееся в периоде повторения равно:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--