Курсовая работа: Решение дифференциальных уравнений по методу Эйлера

Следующая опция Reshenie. После нажатия в окне просят ввести N(целое число) – число промежутков, на которые разделится рассматриваемый участок (ось ОХ). После появится таблица рассчитанных данных (номер точки, значение абсциссы, значение ординаты). При нажатии любой клавиши произойдет переход в меню.

Graphic эта опция позволяет визуально видеть решение, а так же на этом графике прописываются все данные: начальная формула, шаг и промежуток построения графика, масштаб, данные об его изменении(клавишами +(увеличить) и -(уменьшить), а также возможность определить точное значение функции в любой точке.

Опция Exit применяется для выхода из программы.


Заключение

Результатом выполнения курсового проекта является готовый программный продукт, позволяющий решать дифференциальные уравнения по методу Эйлера, демонстрирующий возможности численного решения поставленной задачи с заданной степенью точности.

Данная программа решает заданную пользователем дифференциальное уравнение за минимальный промежуток времени. При этом пользователю предоставляется возможность визуально оценить решение, рассматривая график полученного решения.

К достоинствам программы можно отнести также удобный пользовательский интерфейс, возможность ввода пользовательских дифференциальных уравнений, а также давольно высокая стабильность работы. Однако имеются и некоторые недостатки. К недостаткам программы можно отнести: критичность к вводимым пользователем урававней, отсутствие обработки исключительных событий. Это, естественно, ограничивает возможности программы.


Список использованной литературы

1. Д. Мак-Кракен, У. Дорн. Численные методы и программирование на фортране. –М.: Мир,1977.-389,396-408 с.

2. А.А. Самарский. Введение в численные методы. – М.:Наука,1987.-176 с.

3. Алгоритмы вычислительной математики: Лабораторный практикум по курсу «Программирование» для студентов 1 - 2-го курсов всех специальностей БГУИР/А.К. Синицын, А.А. Навроцкий.- Мн.: БГУИР, 2002.- 65-69 с.

4. ГОСТ 2.105-95. Общие требования к текстовым документам.

5. ГОСТ 7.32-91. Система стандартов по информации, библиотечному и издательскому делу. Отчет о НИР. Структура и правила оформления.


Приложение 1. Текст программы.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <conio.h>

#include <dos.h>

#include <graphics.h>

#include <math.h>

#include <bios.h>

//---------------------------------------------------------------------------

void formyl(int p)

{

if(p==1) printf("\n 1. C1*y' = C2*y + C3*x + C4*x*y");

else if(p==2) printf("\n 2. y'/(C1-100) = C2*y + C3*x + (C4+x)*y");

else if(p==3) printf("\n 3. pow(e,C1)*y' = C2*y + C3*cos(x) + (C4+x+y)");

else if(p==4) printf("\n 4. C1*sin(x)*y' = e*C2*y + C3*arcsin(x) + C4*y/x");

К-во Просмотров: 1285
Бесплатно скачать Курсовая работа: Решение дифференциальных уравнений по методу Эйлера